adyState == 4) { if (xhr2.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhr2); } } else { alert(errmsg); } } }; xhr2.open('GET', encodeURI(sUrl), bAsync); xhr2.send('Null'); } } function SetSearchLink(item) { var url = "../journal/recordsearchinformation.aspx"; var skid = $(":hidden[id$=HiddenField_SKID]").val(); var args = "skid=" + skid; url = url + "?" + args + "&urllink=" + item; window.setTimeout("showSearchUrl('" + url + "')", 300); } function showSearchUrl(url) { var callback2 = function (xhr2) { } ajax2.get(url, true, callback2, "try"); }
ENG> Vol.4 No.9, September 2012
Share This Article:
Cite This Paper >>

Field of Stresses in an Isotropic Plane with Circular Inclusion under Tensile Stress

Abstract Full-Text HTML XML Download Download as PDF (Size:1590KB) PP. 583-589
DOI: 10.4236/eng.2012.49074    3,194 Downloads   5,342 Views   Citations
Author(s)    Leave a comment
Deryugin Ye Yevgeny, G. V. Lasko

Affiliation(s)

Institute for Strength Physics and Materials Science (ISPMS SB RAS), Tomsk, Russia.
Staatliche Materialprufungsanstalt (МPА), University of Stuttgart, Stuttgart, Germany.

ABSTRACT

Within the framework of the linear theory of elasticity, the analytical equations for the components of the stress tensor for а plane with а circular inclusion under tensile loading have been derived using the method of superposition. The given approach allows one to describe the plane-stress state of the plane both for the case of rigid and “soft” inclusions.

KEYWORDS

Linear Theory of Elasticity; Method of Superposition; Boundary Conditions; Stress Field Components; Inclusion; Circular Hole

Cite this paper

D. Yevgeny and G. Lasko, "Field of Stresses in an Isotropic Plane with Circular Inclusion under Tensile Stress," Engineering, Vol. 4 No. 9, 2012, pp. 583-589. doi: 10.4236/eng.2012.49074.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. A. Ovid’ko and A. G. Sheinerman, “Elastic Fields of Nanoscopic Inclusions in Nanocomposites,” Reviews on Advanced Materials Science, Vol. 9, 2005, pp. 17-33.
[2] N. A. Bert, A. L. Kolesnicova, A. E. Romanov and V. V. Tshaldushev, “Elastic Behavior of a Spherical Inclusion with a Given Uniaxial Dilatation,” Physics of the Solid State, Vol. 44, No. 12, 2002, pp. 2139-2148. doi:10.1134/1.1529918
[3] M. Lai, E. Krempl and D. Ruben, “Introduction in Continuum Mechanics,” 4th Edition, Elsevier, Oxford, 2010.
[4] S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 3rd Edition, McGraw Hill, New York, 1970.
[5] V. А. Levin, “Many-Folded Superposition of Great Deformations in Elastic and Viscous-Elastic Bodies,” Fizmatgiz, Moscow, 1999.
[6] S. L. Crouch and А. М. Starfield, “Boundary Element Methods in Solid Mechanics,” George Allen & Unwin, London, 1983.
[7] А. V. Mal and S. J. Singh, “Deformation of Elastic Solids,” Prentice Hall, New York, 1992.
[8] D. E. Eshelby, “Definition of the Stress Field, Which Was Creating bу Elliptical Inclusion,” Proceedings of the Royal Society А, Vol. 241, No. 1226, 1957, p. 376. doi:10.1098/rspa.1957.0133
[9] D. E. Eshelby, “Elastic Field outside the Elliptical Inclusion,” Proceedings of the Royal Society А, Vol. 252, No. 1271, 1959, p. 561. doi:10.1098/rspa.1959.0173
[10] G. Kirsch, “Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre,” Zantralblatt Verlin Deutscher Ingenieure, Vol. 42, 1898, pp. 797-807.
[11] “Physical Values: Handbook,” Energoatomizdat, Moscow, 1991.

  
comments powered by Disqus
ENG Subscription
E-Mail Alert
ENG Most popular papers
Publication Ethics & OA Statement
ENG News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.