Synthesis and Characterization of Copper Substituted Nickel Nano-Ferrites by Citrate-Gel Technique


Mixed Copper substituted Nickel nano-ferrites having the chemical formula Ni1-xCuxFe2O4 (where x = 0, 0.2, 0.4, 0.6, 0.8, 0.9 and 1.0) were synthesized by citrate gel technique. The crystal structure characterization and morphology were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). An elemental composition of the samples were studied by energy dispersive X-ray Spectroscopy (EDS). Lattice parameter, X-ray density, Volume of the Unit Cell and The values of the hopping length for octahedral (dB) and tetrahedral (dA) sites were calculated. The observed results can be explained on the basis of composition.

Share and Cite:

R. Sridhar, D. Ravinder and K. Kumar, "Synthesis and Characterization of Copper Substituted Nickel Nano-Ferrites by Citrate-Gel Technique," Advances in Materials Physics and Chemistry, Vol. 2 No. 3, 2012, pp. 192-199. doi: 10.4236/ampc.2012.23029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and Zou, Mater. Lett. 60, 3548-3552 (2006). doi:10.1016/j.matlet.2006.03.055
[2] P.C. Dorsey, P. Lubitz, D.B. Chrisey, and J.S.Horwitz, J. Appl. Phys. 85, 6338-6345 (1999).
[3] M.H. Sousa and F.A. Tourinho, J. Phys. Chem. B 105, 1168-1175 (2001). doi:10.1021/jp0039161
[4] F. Mazaleyrat and L.K. Varga, J. Magn. Magn. Mater. 215, 253-259 (2000). doi:10.1016/S0304-8853(00)00128-1
[5] D. E. Speliotis, J. Magn. Magn. Mater. 93, 29-35 (1999). doi:10.1016/S0304-8853(98)00399-0
[6] Y. Cheng, Y. Zheng, Y. Wang, F. Bao and Y. Qin, J. Solid State Chem. 178, 2394-2397 (2005). doi:10.1016/j.jssc.2005.05.006
[7] P.K.Roy, Bibhuti B. Nayak, J. Bera J. Magn.Mater., 320 (2008). P. 1128 doi:10.1016/j.jmmm.2007.10.025
[8] P.A.Jadhav, R.S.Devan, Y.D. Kolekar, B.k. Chougule J.Phys. Chem. Solids, 70 (2009), p. 396 doi:10.1016/j.jpcs.2008.11.019
[9] M.A.Gabal J. Magn. Magn. Mater., 321 (2009), p. 3144 doi:10.1016/j.jmmm.2009.05.047
[10] J. Slama. A. Gruskova, M. Usakova, E. Usak, Rastislav J. Magn. Magn., 321 920090, p. 3346
[11] M.A. Ahmed, A. A. I. Khalil, S. Solyman J. Mater.Sci.,42(11) (2007), p. 4098 doi:10.1007/s10853-006-1151-z
[12] S.A. Mazen, M.A. Ah-med, B.A.Sabra Phys. Status Solidi (a), 70 (1982), p. K71 doi:10.1002/pssa.2210700158
[13] M.A. Ahmed, N. Okasha, L. Salah J. Magn. Magn. Mater., 264 (2003), p. 241 doi:10.1016/S0304-8853(03)00212-9
[14] M.C. Dimri, A.K. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur Mater. Sci. Eng. B, 133 (2006), p. 42 doi:10.1016/j.mseb.2006.04.043
[15] A. Verma, T.C. Goal, R.G. Mendiratta, P. Kishan J. Magn. Magn. Mater., 208 (2000), p. 13 doi:10.1016/S0304-8853(99)00585-5
[16] Nanba N., Koba-yashi S., Jpn. J. Appl. Phys. 17(1978) 1819 doi:10.1143/JJAP.17.1819
[17] Sawant S. R. and Patil R. N., Solid State Commun. 40 (1981) 391. doi:10.1016/0038-1098(81)90845-0
[18] Park I. W., Yoon M., Kim Y. M., Kim Y., Yoon H., Song H. J., Volkov V., Avilov A. and Park Y. J., Solid State Commun. 126(7), (2003) 385. doi:10.1016/S0038-1098(03)00189-3
[19] E. E. Sileo, R. Rotelo, S.E. Jacobo, Nickel Zinc ferrites prepared by citrate precursor method, J. Phys. B., 320(2002), 257-260. doi:10.1016/S0921-4526(02)00705-6
[20] U.Erb, Nanostruct. mater. 6(1995) 533.
[21] A.Chatterjee, D. Das, S.K. Pradhan, D. Chakravarty, J. Magn. Mater. 127(1993)124. doi:10.1016/0304-8853(93)90217-P
[22] M.Pal and D.Chakravorty, Sadhana 28 (1,2) (2003) 283-297.
[23] J.Chargles, N. O’Connor, E Kolesnichenko, C. Carpenter, S.W. Zheu, A. Kumbhar, S.Jessica and A.Fabrice Synthetic Metal. 122(2001)547-555. doi:10.1016/S0379-6779(01)00328-9
[24] C. Caizer and M. Stefanescu, J. Phys. D. Appl. Phys. 35(2002) 3035-3040. doi:10.1088/0022-3727/35/23/301
[25] A. Dias, Mater. Resea. Bull. 35(2000)1439-1446. doi:10.1016/S0025-5408(00)00337-8
[26] S. Gubbala, H. Nathani, K. Koizol, R.D. K. Misra, Physica B 348(2004)317-328. doi:10.1016/j.physb.2003.12.017
[27] P.Pramanik, Bull. Mater. Sci. (1999)335. doi:10.1007/BF02749940
[28] R. N. Das, Mater. Lett. 47(2001)344. doi:10.1016/S0167-577X(00)00264-0
[29] Biamino S, Badini C. Comhustion synthesis of lanthanum chromite starting form water solution : investigation of process mechanism by DTA-TGA-Ms. J Eur Geram Soc 2004;24:3021-34. doi:10.1016/j.jeurceramsoc.2003.10.005
[30] Zhang H, Jia X, Liu Z, LiC. The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol-gel process. Mater Lett 2004; 58:1625-8. doi:10.1016/j.matlet.2003.09.051
[31] Saberi A, Golestani-Fard F, Sarpoolaky H, Willert-Porada M, Gerdes T, Simon R. Chemical synthesis of nanocrystalline magnesium aluminate spinel (MgAl2O4) via nitrate-cirate combustion. J Alloys Compd 2008; 462:142-6. doi:10.1016/j.jallcom.2007.07.101
[32] Vivekanandhan S, Venkateshwarlu M, Satyanarayana N. Synthesis and character-ization of nanocrystalline LiNi0.5Co0.5VO4 powders by citric acid assisted sol-gel combustion process. J Alloys Ciompd 2008; 462:328-34. doi:10.1016/j.jallcom.2007.08.055
[33] Wu Zj, Zhao XB, Tu J, Cao GS, Tu Jp, Ahu Tj. Synthesis of Li1+xV3O8 by citrate sol-gel route at low temperature. J Alloys Compd 2007; 403:345-8.
[34] Wu Y, He Y, Wu T, Chen T, Weng W, Wan H. Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method. Mater Lett 2007; 61:3174-8. doi:10.1016/j.matlet.2006.11.018
[35] Sahi S, Daud AR, Hashim M. A comparative study of nickel-zinc ferrites by sol-gel route and solid-state reaction. Mater Chem Phys 2007; 106:452-6. doi:10.1016/j.matchemphys.2007.06.031
[36] S.A. Mazen, S.F. Mansour, H.M. Zaki, published on line 15 June 2003. “Some physical and magntic properties of Mg-Zn ferrite”. Cryst. Res. Technol. 38, No 6,471-478 (2003). doi:10.1002/crat.200310059
[37] Cullity B D, Elements of X-ray diffraction (Addition Wesley, Reading, Mass), 1959, p132
[38] Mahmud ST, Akther Hossain AKM, Abudul Hakim AKM, Seki M, Kawai T, Tabata H (2006) J Magn Magn Mater 305:269 doi:10.1016/j.jmmm.2006.01.012
[39] B. D. Cullity, Elements of X-ray diffraction, Wesley Pub., Co., Massachusetts, 1987, 101-356.
[40] R. G. Gupta, R. G. Mendiratta, Mossbauer studies in ZnxMn1-xFe2O4 systems, J. Appl. Phys., 48(1977), 845-848. doi:10.1063/1.323642
[41] R. G. Gupta, R. G. Mendiratta, Hyperfine field in Zn2+0.3 Mn2+0.7 Mn3+y Fe3+2-yO4, J. Appl. Phys., 48(1977), 2998-3000. doi:10.1063/1.324063
[42] B. P. Ladgaonkar, P. P. Bakare, S. R. Sainkar and A. S. Vaingankar, “influence of Nd3+ substitution on permeability spectrum of Zn-Mg ferrite”, Materials Chemistry and Physics, Volume 69, Issues 1-3, 1 March 2001, Pages 19-24.
[43] L. Vergard, Z. Phys. 5 (1921) 17. doi:10.1007/BF01349680
[44] Manjura Hoque S, Md Choudhury Amanullah & Islam Fakhrul, J Mag Mag Mater, 251 (2002) 2.
[45] R.C. Kumbale. P. A. Shaikh, S.S. Kamble, Y.D. Kolekar J. Alloys Compd., 478 (2009), p. 599 doi:10.1016/j.jmmm.2005.03.007
[46] P. K. Roy, J. Bera J. Magn. Magn. Mater., 298 (2006), p. 38
[47] B.Viswanathan, V. R.K. Murthy Ferrite Materials Science and Technology NarosaPubl House, New Delhi (1990)

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.