Sintering Condition and Optical Properties of Zn3V2O8 Phosphor

Abstract

One of promising phosphors in vanadium oxide family, Zn3V2O8, was successfully synthesized by a solid state reaction of ZnO and V2O5. Characterization by XRD, photoluminescence (PL) and SEM was done for samples with different temperature and time in the sintering process. Residual percentage of secondary Zn2V2O7 phase, subsidiary ZnO and Zn4V2O9 phases was dependent on the sintering condition. The crystalline purity (CP) was defined by the integral intensity ratio of Zn3V2O8 phase and that of residual phases in XRD spectra, which showed a reasonable correspondence to the PL quantum yield (QY) of each sample. The highest QY exceeding 50% was obtained by the sintering condition of 750?C for 48 h. It turned out that the CP value is a good measure of high QY, which can be utilized for developing phosphor materials and controlling their processes.

Share and Cite:

T. Li, J. Luo, Z. Honda, T. Fukuda and N. Kamata, "Sintering Condition and Optical Properties of Zn3V2O8 Phosphor," Advances in Materials Physics and Chemistry, Vol. 2 No. 3, 2012, pp. 173-177. doi: 10.4236/ampc.2012.23026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Shionoya, and W. M. Yen, “Phosphor Handbook”, CRC Press, 1999.
[2] J. J. Opstelten et al., “The choice and evaluation of phosphors for application to lamps with improved color rendition”, J. Electrochem. Soc., 120, pp. 1400-1408 (1973). doi:10.1149/1.2403269
[3] J. Koike et al., “New Tricolor Phosphors for. Gas Discharge Display”, J. Electrochem. Soc., 126, pp.1008- 1010 (1979). doi:10.1149/1.2129164
[4] I. Akasaki and H. Amano, “Breakthroughs in Improving Crystal Quality of GaN and Invention of the p–n Junction Blue-Light-Emitting Diode”, Jpn. J. Appl. Phys., 45, pp. 9001-9010 (2006). doi:10.1143/JJAP.45.9001
[5] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irra-diation (LEEBI)”, Jpn. J. Appl. Phys., 28, pp. L2112-L2114 (1989). doi:10.1143/JJAP.28.L2112
[6] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AIGaN dou-ble-heterostructure blue-light-emitting”, Appl. Phys. Lett., 64, pp. 1687-1689 (1994). doi:10.1063/1.111832
[7] K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps”, J. Light and Visual Environment, 22, pp. 2-5 (1998). doi:10.2150/jlve.22.1_2
[8] T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, “Correlation between Lumi-nescence Quantum Efficiency and Structural Properties of Vanadate Phosphors with Chained, Dimerized, and Isolated VO4 Tetrahedra”, J, Phys, Chem. C, 114, pp. 5160-5167 (2010). doi:10.1021/jp910884c
[9] M. Kurzawa, I. Rychlowska-Himmel, M. Bosacka, A. Blonska-tabero, “Study on phase relations in Zn3V2O8- ZnMoO4 system”, J. Thermal Analysis and Calorimetry, 64, pp. 1113-1119 (2001). doi:10.1023/A:1011524424682
[10] M. Kurzawa and M. Bosacka, “Reinvestigation of phase equilibria in the V2O5-ZnO system”, J. Thermal Analysis and Calorimetry, 64, pp. 1081-1085 (2001). doi:10.1023/A:1011564106026
[11] H. H. Hng, K. Y. Tse, “Effects of MgO doping in ZnO-0.5 mol% V2O5 varistors”, Ceramics International 34, pp. 1153-1157 (2008). doi:10.1016/j.ceramint.2007.02.004
[12] M. M. Abd El-Latif, M. F. Elkady, “Kinetics study and thermodynamic behavior for removing cesium, cobalt and nickel ions from aqueous solution using nano-zirconium vanadate ion exchanger”, Desalination. 271, pp. 41-54 (2011). doi:10.1016/j.desal.2010.12.004
[13] T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn)”, J. Lumin., 129, pp. 1598-1602 (2009). doi:10.1016/j.jlumin.2009.03.029
[14] R. Gopal and C. Calvo, “Crystal Structure of α-Zn3(VO4)2”, Can. J. Chemistry, 49, pp. 3056-3059 (1971). doi:10.1139/v71-510
[15] Chen. Y. Q, Li. L, Ren. Q, Zhu. H. T et al, “Phase relations in the ZnO-V2O5-K2O system”, Chin. Phys. B, 20, pp. 076402-1-7 (2011).
[16] T. Li, J. Luo, Z. Honda, T. Fukuda and N. Kamata, “Photolu-minescence Characterization of Zn3V2O8 phosphor”, National Conv. of the Illuminating Engineering Inst. of Japan, Matsuyama, pp. 221 (in Japanese).
[17] H. H. Hng and K. M. Knowles, “Characterization of Zn3(VO4)2 phases in V2O5-doped ZnO varistors”, J. European Ceramic Society 19, pp. 721-726 (1999). doi:10.1016/S0955-2219(98)00303-3
[18] T. Nakajima, T. Tsuchiya, T. Manabe, “New sign of vacuum ultraviolet driven crystal growth in ternary oxide Zn3V2O8 films”, Appl. Phys A, 98, pp. 885-888 (2010). doi:10.1007/s00339-009-5470-1
[19] S. Karamat, R. S. Rawat, P. Lee et al. “Structural, compositional and magnetic character-ization of bulk V2O5 doped ZnO system”, Applied Surface Since, 256, pp. 2309-2314 (2010). doi:10.1016/j.apsusc.2009.09.039
[20] M. M. Francisco, J. V. Miriam, P. Heriberto, “Micro-structural development of ZnO pellets doped with different Vanadium Oxides (V2O5 and V2O3)”, Int. J. Appl. Ceram. Technol., 4(6), pp. 564-570 (2007). doi:10.1111/j.1744-7402.2007.02167.x
[21] S. B. Ni, X. H. Wang, G. Zhou, F. Yang, J. M. Wang, D. Y.He, “Crystallized Zn3(VO4)2: Synthesis, characterization and optical property”, J. Alloys and Compounds, 491, pp. 378-381 (2010). doi:10.1016/j.jallcom.2009.10.188

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.