Pharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging

Abstract

We have previously demonstrated that antagonism of glutamate NMDA receptors or activation of endocannabinoid receptors could reduce experimentally induced neuroinflammation within the hippocampus of young rats. In the current study, we investigated whether pharmacological manipulation of glutamate or endocannabinoid neurotransmission could reduce naturally-occurring neuroinflammation within the hippocampus of aged rats. We investigated whether UCM707, an inhibitor of endocannabinoid re-uptake, WIN- 55,212-2, an endocannabinoid receptor agonist, and URB597, an inhibitor of endocannabinoid catabolism, or memantine, a non-competitive, low-affinity, inhibitor of the open NMDA receptor channel, could reduce the number of MHC II-IR microglia within the hippocampus. All of the drugs, except URB597, reduced the number of reactive microglia, as compared to vehicle treated rats. The current results suggest potential pharmacological approaches that may mitigate the pathological consequences of chronic brain inflammation associated with numerous neurodegenerative diseases.

Share and Cite:

Bardou, I. , DiPatrizio, N. , Brothers, H. , Kaercher, R. , Baranger, K. , Mitchem, M. , Hopp, S. , Wenk, G. and Marchalant, Y. (2012) Pharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging. Health, 4, 679-684. doi: 10.4236/health.2012.429107.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Akiyama, H., Barger, S., et al. (2010) Inflammation in Alzheimer’s disease. Neurobiology of Aging, 21, 383-421. doi:10.1016/S0197-4580(00)00124-X
[2] Remarque, E.J., Bollen, E.L., Weverling-Rijnsburger, A.W., Laterveer, J.C., Blauw, G.J. and Westendorp, R.G.J. (2001) Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Experimental Gerontology, 36, 171-176. doi:10.1016/S0531-5565(00)00176-5
[3] Nelson, P.T., Somam, L.A. and Lavi, E. (2002) Microglia in diseases of the central nervous system. Annals of Medicine, 34, 491-500. doi:10.1080/078538902321117698
[4] Hauss-Wegrzyniak, B., Vraniak, P. and Wenk, G.L. (1999) The effects of a novel NSAID upon chronic neuroinflammation are age dependent. Neurobiology of Aging, 20, 305-313. doi:10.1016/S0197-4580(99)00028-7
[5] Imbimbo, B.P. (2009) An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer’s disease. Expert Opinion on Investigational Drugs, 18, 1147-1168. doi:10.1517/13543780903066780
[6] Marchalant, Y., Rosi, S. and Wenk, G.L. (2007) Anti-inflammatory property of the cannabinoid agonist WIN- 55212-2 in a rodent model of chronic brain inflammation. Neuroscience, 144, 1516-1522. doi:10.1016/j.neuroscience.2006.11.016
[7] Marchalant, Y., Cerbai, F., Brothers, H.M. and Wenk, G.L. (2008) Cannabinoid receptor stimulation is anti-inflamematory and improves memory in old rats. Neurobiology of Aging, 29, 1894-1901. doi:10.1016/j.neurobiolaging.2007.04.028
[8] Marchalant, Y., Brothers, H.M. and Wenk, G.L. (2008) Inflammation and aging, can endocannabinoids help? Biomedical Pharmacotherapy, 6, 212-217. doi:10.1016/j.biopha.2008.02.004
[9] Marchalant, Y., Brothers, H.M. and Wenk, G.L. (2009) Cannabinoid agonist WIN-55,212-2 partially restores neurogenesis in the aged rat brain. Molecular Psychiatry, 14, 1068-1071. doi:10.1038/mp.2009.62
[10] Willard, L.B., Hauss-Wegrzyniak, B., Danysz, W. and Wenk, G.L. (2000) The cytotoxicity of chronic neuroinflammation upon basal forebrain cholinergic neurons of rats can be attenuated by glutamatergic antagonism or cyclooxygenage-2 inhibition. Experimental Brain Research, 134, 58-65. doi:10.1007/s002210000446
[11] Rosi, S., Ramirez-Amaya, V., Vazdarjanova, A., Worley, P.F., Barnes, C.A. and Wenk, G.L. (2005) Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. Journal of Neuroscience, 25, 723-731. doi:10.1523/JNEUROSCI.4469-04.2005
[12] Rosi, S., Vaz-darjanova, A., Ramirez-Amaya, V., Worley, P.F., Barnes, C.A. and Wenk, G.L. (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience, 142, 1303-1315. doi:10.1016/j.neuroscience.2006.08.017
[13] Di Marzo, V., Melck, D., Bisogno, T. and De Petrocellis, L. (1998) Endocan-nabinoids, endogenous cannabinoid receptor ligands with neuromodulatory action. Trends in Neurosciences, 21, 521-528. doi:10.1016/S0166-2236(98)01283-1
[14] Cabral, G.A. and Griffin-Thomas, L. (2008) Cannabinoids as therapeutic agents for ablating neuroinflammatory disease. Endocrine Metabolism, Immune Disorders & Drug Targets, 8, 159-172. doi:10.2174/187153008785700118
[15] Piomelli, D. (2003) The molecular logic of endocannabinoid signaling. Nature Reviews Neuroscience, 4, 873-884. doi:10.1038/nrn1247
[16] Alger, B.E. and Kim, J. (2011) Supply and demand for endocannabinoids. Trends in Neurosciences, 34, 6-10. doi:10.1016/j.tins.2011.03.003
[17] Pertwee, R.G. (2005) Pharmacological actions of cannabinoids. Handbook of Experimental Pharmacology, 168, 1-51. doi:10.1007/3-540-26573-2_1
[18] Fegley, D., Gaetani, S., Duranti, A., Tontini, A., Mor, M. and Tarzia, G. (2005) Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3’- carbamoyl-biphenyl-3-yl ester (URB597), effects on anandamide and oleoylethanolamide deactivation. Journal of Pharmacology & Experimental Therapeutics, 313, 352-358. doi:10.1124/jpet.104.078980
[19] Hwang, J., Adamson, C., Butler, D., Janero, D.R., Makriyannis, A. and Bahr, B.A. (2010) Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition, a neuroprotective therapeutic modality. Life Sciences, 86, 615-623. doi:10.1016/j.lfs.2009.06.003
[20] Ortega-Gutierrez, S., Molina-Holgado, E. and Guaza, C. (2005) Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia, 52, 163-168. doi:10.1002/glia.20229
[21] Loría, F., Petrosino, S., et al. (2010) An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiology of Disease, 37, 736-749.
[22] Rogawski, M. and Wenk, G.L. (2003) The neuropharmacological basis for Memantine in the treatment of Alzheimer’s disease. CNS Drug Review, 9, 275-308. doi:10.1111/j.1527-3458.2003.tb00254.x
[23] Astarita, G. and Piomelli, D. (2009) Lipidomic analysis of endocannabinoid metabolism in biological samples. Journal of Chromatography B, 877, 2755-2767. doi:10.1016/j.jchromb.2009.01.008
[24] Giuffrida, A., Rodriguez de Fonseca, F., Nava, F. and Loubet-Lescoulie, P. (2000) Elevated circulating levels of anandamide after administration of the transport inhibitor, AM404. European Journal of Pharmacology, 408, 161- 168. doi:10.1016/S0014-2999(00)00786-X
[25] Eisenstein, S.A., Holmes, P.V. and Hohmann, A.G. (2009) Endocannabinoid modulation of amphetamine sensitization is disrupted in a rodent model of lesion-induced dopamine dysregulation. Synapse, 63, 941-950. doi:10.1002/syn.20679
[26] Haller, J., Barna, I., et al. (2009) Interactions between environmental aversiveness and the anxi-olytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats. Psychopharmacology, 204, 607-616. doi:10.1007/s00213-009-1494-7
[27] Ahn, K., Johnson, D.S., et al. (2007) Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry, 46, 13019-13030. doi:10.1021/bi701378g
[28] Marchalant, Y., Brothers, H.M., Norman, G.J., Karolina, K., De Vries, C. and Wenk, G.L. (2009) Cannabinoids attenuate the effects of aging upon neuroinflammation and neurogenesis. Neurobiology of Disease, 34, 300-307. doi:10.1016/j.nbd.2009.01.014
[29] Stella, N. (2009) Endocannabinoid signaling in microglia cells. Neuropharmacology, 56, 244-253. doi:10.1016/j.neuropharm.2008.07.037
[30] Jiang, X., Newell, E.W. and Schlichter, L.C. (2003) Regulation of TRPM7-like current in rat brain microglia. Journal of Biological Chemistry, 278, 42867-42876. doi:10.1074/jbc.M304487200

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.