Ab Initio Study of Electronic Properties of a Armchair (7,7) Carbon Nanotube

Abstract

The electronic structure, band gap and density of states of (7,7) Armchair carbon nanotube by the full potentiallin- earized augmented plane wave (FP-LAPW)method in the framework density functional theory (DFT) with the generalized gradient approximation (GGA) were studied. The calculated band structure and density of state of Armchair (7,7) carbon nanotube were in good agreement with theoretical and experimental results.

Share and Cite:

H. Salehi and K. Gharbavi, "Ab Initio Study of Electronic Properties of a Armchair (7,7) Carbon Nanotube," Advances in Materials Physics and Chemistry, Vol. 2 No. 3, 2012, pp. 159-162. doi: 10.4236/ampc.2012.23024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58 (1991). doi:10.1038/354056a0
[2] M. Daenen, R.D. de Fouw, B.Hamers, P.G.A.Janssen, K. Schouteden and M.A.J Veld, ” The Wondrous World of Carbon Nanotubes”,Eindhoven Uni-versity of Technology (2003).
[3] F. Kreupl, et al., “Carbon Nanotubes in Interconnect Applications,” MicroelectronicEngineering, Vol.64, pp. 399-408 (2002). doi:10.1016/S0167-9317(02)00814-6
[4] B. Q. Wei, et al., “Reliability and Current Carrying Capacity of Carbon Nano-tubes,” Appl. Phys. Lett., Vol. 79, No. 8, pp. 1172-1174 (2001). doi:10.1063/1.1396632
[5] M. Radosavljevic, et al., “High-field Electrical Transport and Breakdown in Bundles of Single-wall Carbon Nanotubes”, Physical Review B, Vol. 64, 241307 (2001).
[6] H. Dai, Surf. Sci. 500, 218(2002). doi:10.1016/S0039-6028(01)01558-8
[7] S. Tasaki, K. Maekawa, and T. Yamabe, Phys. Rev. B 57,9301–9318 (1998). doi:10.1103/PhysRevB.57.9301
[8] I. Bozovic, N. Bozovic, and M. Damnjanovic, Phys. Rev. B62, 6971–6974 (2000). doi:10.1103/PhysRevB.62.6971
[9] O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett.85, 5218–5221 (2000). doi:10.1103/PhysRevLett.85.5218
[10] E. L. Ivchenko and B. Spivak, Phys. Rev. B 66, 155404–155409 (2002). doi:10.1103/PhysRevB.66.155404
[11] J. P. Perdew, J.A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B46, 6671-6687 (1992). doi:10.1103/PhysRevB.46.6671
[12] M. Peterson, F. Wanger, L. Hufnagel, M. Scheffler, P. Blaha and K. Schwarz, Computer Physics Communications, 126, 294-309 (2000). doi:10.1016/S0010-4655(99)00495-6
[13] P. Blaha and K. Schwarz, WIEN2k, Vienna University of Technology Austria (2008).
[14] T. Movlarooy, A. Kompany, S. M. Hosseini and N. Shahtahmasebi,” Optical absorption and electron energy loss spectra of single-walled carbon nanotubes”, J. Computational Materials Science 49, 450–456 (2010). doi:10.1016/j.commatsci.2010.05.035
[15] D. J. Mowbray, C. Morgan and K. S. Thygesen,” Influence of O2 and N2 on the conductivity of carbon nanotube networks”, PHYSICAL RE-VIEW B 79, 195431 (2009). doi:10.1103/PhysRevB.79.195431
[16] Y. Maeda, Sh. Kimura, M. Kanda, Y. Hirashima, T .Hasegawa, T. Wakahara, Y. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X. Zhang, Z. Gao, Y. Yu, Sh. Nagase, S.Kazaoui,N.Minami, T. Shimizu, H. Tokumoto, and R.SaitoO,” Large-Scale Separation of Metallic and Semiconducting Single- Walled Carbon Nanotubes”, J. AM. CHEM. SOC. 127, 10287-10290(2005). doi:10.1021/ja051774o
[17] W.Zhu, X. Yan and Y.Xiao,” Hexagonal silicon nanotube confined inside a carbon nanotube: A first-principles study”, Physics Letters. A 372, 1308-1312 (2008) doi:10.1016/j.physleta.2007.09.017

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.