Numerical Modeling of the Measure of Global Environmental Needs with Applications Laser-LIDAR

DOI: 10.4236/ajcm.2012.23024   PDF   HTML   XML   3,058 Downloads   5,691 Views  

Abstract

The functions of Bessel are used extensively in the various problems of the science and the technology. A laser offers practical remote sensing technologies for measuring environmental changes on both global and local scales. We describe a computer model that was developed to simulate the performance of three-dimensional (3D) laser radars (lidars). The principle of the problem consists in interpreting information on the absorption of the laser impulse in a spectral line assigned to the chemical body that one studied. Our purpose is to estimate the vertical variation of extinction and atmospheric transmission due to aerosol particles near the air-geographical surface interface. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation.

Share and Cite:

F. Mohammedi, B. Zergui, H. Soubari and S. Bensaada, "Numerical Modeling of the Measure of Global Environmental Needs with Applications Laser-LIDAR," American Journal of Computational Mathematics, Vol. 2 No. 3, 2012, pp. 194-198. doi: 10.4236/ajcm.2012.23024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Observation of bifurcation to chaos in an all-optical bistable system, Phys. Rev. Lett., 50(2), 109-112, 1983. doi:10.1103/PhysRevLett.50.109
[2] K. Tamura, E.P. Ippen, H.A. Haus, and L.E. Nelson, 77-fs pulse generation from a stretched-pulse mode locked all fiber ring laser, Opt. Lett., 18(13), 1080-1082,1993. doi:10.1364/OL.18.001080
[3] G. Yandong, S. Ping, and T. Dingyuan, 298a??fs passively mode locked ring fiber soliton laser, Microw. Opt. Tech. Lett., 32(5), 320-333, 2002. doi:10.1002/mop.10170
[4] K.K. Gupta, N. Onodera, and M. Hyodo, Technique to generate equal amplitude, higher-order optical pulses in rational harmonically modelocked fiber ring lasers, Electron. Lett., 37(15), 948-950, 2001. doi:10.1049/el:20010584
[5] Y. Shi, M. Sejka, and O. Poulsen, A unidirectional Er3+-doped fiber ring laser without isolator, IEEE Photon. Technol. Lett., 7(3), 290-292, 1995. doi:10.1109/68.372749
[6] J.M. Oh and D. Lee, Strong optical bistability in a simple L-band tunable erbium doped fiber ring laser, J. Quantum Electron., 40(4), 374-377, 2004. doi:10.1109/JQE.2004.824699
[7] Q. Mao and J.W.Y. Lit, L-band fiber laser with wide tuning range bases on dual wave length optical bistability in linear overlapping grating cavities, IEEE J. Quantum Electron., 39(10), 1252-1259, 2003. doi:10.1109/JQE.2003.817239
[8] L. Luo, T.J. Tee, and P.L. Chu, Bistability of erbium doped fiber laser, Opt. Commun., 146, 151-157, 1998. doi:10.1016/S0030-4018(97)00502-6
[9] P.P. Banerjee, Nonlinear Optics—Theory, Numerical Modeling, and Applications, Marcel Dekker Inc., New York, 2004.
[10] P. Meystre, On the use of the mean-field theory in optical bistability, Opt. Commun., 26(2), 277-280, 1978. doi:10.1016/0030-4018(78)90071-8
[11] L.A. Orozco, H.J. Kimble, A.T. Rosenberger, L.A. Lugiato, M.L. Asquini, M. Brambilla, and L.M. Narducci, Single-mode instability in optical bistability, Phys. Rev.A, 39(3), 1235-1252, 1989. doi:10.1103/PhysRevA.39.1235
[12] K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity, Opt. Commun., 30(2), 257-261, 1979. doi:10.1016/0030-4018(79)90090-7
[13] M.J. Ogorzalek, Chaos and complexity in nonlinear electronic circuits, World Sci. Ser. Nonlinear Sci., Ser. A, (22), 1997.
[14] M.P. Kennedy, Three steps to chaos—Part I: Evolution, IEEE Trans. Circuits Syst. I, Fund. Theory Appl., 40(10), 640-656, 1993.
[15] N.J. Doran and D. Wood, Nonlinear-optical loop mirror, Opt. Lett., 13(1), 56-58, 1988. doi:10.1364/OL.13.000056
[16] S. Zhang, Y. Liu, D. Lenstr, M.T. Hill, H. Ju, G.D. Khoe, and H.J.S. Dorren, Ringlaser optical flip-flop memory with single active element, IEEE J. Sel. Top. Quant. Electron., 10(5), 1093-1100, 2004.
[17] M.E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, Nonlinear amplifying loop mirror, Opt. Lett., 15(13), 752-754, 1990. doi:10.1364/OL.15.000752
[18] Alfio Quarteroni, Ricardo Sacco , Fausto Saleri, Méthodes numériques,Algorithmes, analyse et applications, Edition Springer 2008.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.