Time Evolution of Horizons


Finding the origin of Hawking radiation has been a puzzle to researchers. Using a loop quantum gravity description of a black hole slice, a density matrix is defined using coherent states for space-times with apparent horizons. Evolving the density matrix using a semi-classical Hamiltonian in the frame of an observer outside the horizon gives the origin of Hawking radiation.

Share and Cite:

Dasgupta, A. (2012) Time Evolution of Horizons. Journal of Modern Physics, 3, 1289-1297. doi: 10.4236/jmp.2012.329166.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Ashtekar, New Perspectives in Canonical Gravity,” Bibliopolis, Napoli, 1988.
[2] C. Rovelli, “Quantum Gravity,” Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511755804
[3] T. Thiemann, “Introduction to Modern Canonical Quantum General Relativity,” Cambridge University Press, Cambridge, 2007. doi:10.1017/CBO9780511755682
[4] B. Hall, “The Segal-Bargmann ‘Coherent State’ transform for Compact Lie Groups,” Journal of Functional Analysis, Vol. 122, No. 1, 1994, pp. 103-151. doi:10.1006/jfan.1994.1064
[5] T. Thiemann, “Gauge Field Theory Coherent States (GCS): 1. General Properties,” Classical and Quantum Gravity, Vol. 18, No. 1, 2001, pp. 2025-2064. doi:10.1088/0264-9381/18/11/304
[6] A. Dasgupta, “Semiclassical Quantisation of Space-Times with Apparent Horizons,” Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 635-671. doi:10.1088/0264-9381/23/3/007
[7] A. Dasgupta, “Coherent States for Black Holes,” Journal of Cosmology and Astroparticle Physics, Vol. 3, No. 8, 2004, pp. 1-36.
[8] A. Dasgupta, “Semiclassical Horizons,” Canadian Journal of Physics, Vol. 86, No. 4, 2008, pp. 659-662.
[9] A. Dasgupta and H. Thomas, “Correcting Gravitational Entropy of Spherically Symmetric Horizons,” 2006. arXiv:gr-qc/0602006
[10] A. Dasgupta, “Entropic Origin of Hawking Radiation,” Proceedings of 12th Marcel Grossman Meeting, Paris, July 2009.
[11] J. Brown and J. York, “Quasilocal Energy and Conserved Charges Derived from the Gravitational Action,” Physical Review D, Vol. 47, No. 4, 1993, pp. 1407-1419. doi:10.1103/PhysRevD.47.1407
[12] B. Dittrich and T. Thiemann, “Testing the Master Constraint Program for Loop Quantum Gravity: I. General Framework Class,” Classical and Quantum Gravity, Vol. 23, No. 4, 2006, pp. 1025-1066. doi:10.1088/0264-9381/23/4/001
[13] B. Bahr and T. Thiemann, “Gauge-Invariant Coherent States for Loop Quantum Gravity. II. Non-Abelian Gauge Groups,” Classical and Quantum Gravity, Vol. 26, No. 4, 2009, p. 045012.
[14] A. Ashtekar, J. Baez, K. Krasnov and A. Corichi, “Quantum Geometry and Black Hole Entropy,” Physical Re- view Letters, Vol. 80, No. 5, 1998, pp. 904-907. doi:10.1103/PhysRevLett.80.904
[15] S. W. Hawking and G. Horowitz, “The Gravitational Hamiltonian, Action, Entropy and Surface Terms,” Classical and Quantum Gravity, Vol. 13, No. 6, 1996, pp. 1487- 1498. doi:10.1088/0264-9381/13/6/017
[16] T. Thiemann and O. Winkler, “Gauge Field Theory Coherent States (GCS) III: Ehrenfest Theorems,” Classical and Quantum Gravity, Vol. 18, No. 21, 2001, pp. 4629-46841. doi:10.1088/0264-9381/18/21/315
[17] H. Sahlmann and T. Thiemann, “Towards the QFT on Curved Space-Time Limit of QGR. 1. A General Scheme,” Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 867-908. doi:10.1088/0264-9381/23/3/019
[18] H. Sahlmann and T. Thiemann, “Towards the QFT on Curved Space-Time Limit of QGR. 2. A Concrete Implementation,” Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 909-954. doi:10.1088/0264-9381/23/3/020
[19] M. K. Parikh and F. Wilczek, “Hawking Radiation as Tunneling,” Physical Review Letters, Vol. 85, No. 24, 2000, pp. 5042-5045. doi:10.1103/PhysRevLett.85.5042

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.