Astrophysical and Cosmological Probes of Dark Matter


Dark matter has been introduced to explain substantial mass deficits noted at different astronomical scales, in galaxies, groups of galaxies, clusters, superclusters and even across the full horizon. Dark matter does not interact with baryonic matter except gravitationally, and therefore its effects are sensed only on the largest scales. Although it is still unknown whether dark matter consists of particles or of a field or has some other nature, it has a rich phenomenology. This review summarizes all the astrophysical and cosmological probes that have been used to produce evidence for its existence. The breadth of the subject does not permit details on the observational methods (the reference list then helps), thus the review is intended to be useful mainly to cosmologists searching to model dark matter.

Share and Cite:

Roos, M. (2012) Astrophysical and Cosmological Probes of Dark Matter. Journal of Modern Physics, 3, 1152-1171. doi: 10.4236/jmp.2012.329150.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helvetica Physica Acta, Vol. 6, 1933, p. 110.
[2] J. C. Kapteyn, “First Attempt at a Theory of the Arrangement and Motion of the Sidereal System,” The Astrophysical Journal, Vol. 55, 1922, p. 302.
[3] J. H. Jeans, “The Motion of Stars in a Kapteyn Universe,” Monthly Notices of the Royal Astronomical Society, Vol. 82, 1922, p. 122
[4] J. H. Oort, “The Force Exerted by the Stellar System in the Direction Perpendicular to the Galactic Plane and Some Related Problems,” Bulletin of the Astronomical Institutes of the Netherlands, Vol. 6, 1932, p. 249
[5] J. Chadwick, “Possible Existence of a Neutron,” Nature, Vol. 129, No. 3252, 1932, pp. 312-313.
[6] J. Holmberg and C. Flynn, “The Local Density of Matter Mapped by Hipparchos,” Monthly Notices of the Royal Astronomical Society, Vol. 313, No. 2, 2000, pp. 209-216. doi:10.1046/j.1365-8711.2000.02905.x
[7] J. H. Oort, “Infall of Gas from Intergalactic Space,” Nature, Vol. 224, No. 5225, 1969, pp. 1158-1163. doi:10.1038/2241158a0
[8] I. J?rgensen, M. Franx and P. Kj?rgaard, “The Fundamental Plane for cluster E and S0 Galaxies,” Monthly Notices of the Royal Astronomical Society, Vol. 280, 1996, p. 167
[9] J. B. Hyde and M. Bernardi, “The Luminosity and Stellar Mass Fundamental Plane of Early-Type Galaxies,” Monthly Notices of the Royal Astronomical Society, Vol. 396, No. 2, 2009, pp. 1171-1185. doi:10.1111/j.1365-2966.2009.14783.x
[10] J. F. Navarro, C. S. Frenk and S. D. M. White, “A Universal Density Profile from Hierarchical Clustering,” As- trophysical Journal, Vol. 490, 1997, p. 493.
[11] B. Moore, et al., “Resolving the Structure of Cold Dark Matter Halos,” Astrophysical Journal Letters, Vol. 499, No. 1, 1998, p. L5. doi:10.1086/311333
[12] J. Einasto, Trudy Inst. Astrofiz. Alma-Ata,, Vol. 5, 1965, p. 87
[13] A. Burkert, “The Structure of Dark Matter Halos in Dwarf Galaxies,” Astrophysical Journal Letters, Vol. 447, No. 1, 1995, p. L25. doi:10.1086/309560
[14] A. Klypin, S. Trujillo-Gomez and J. Primack, “Dark Matters Halos in the Standard Cosmological Model: Results from the Bolshoi Simulation,” Astrophysical Journal, Vol. 740, No. 2, 2011, p. 102. doi:10.1088/0004-637X/740/2/102
[15] E. L. Lokas and G. Mamon, “Dark Matter Distribution in the Coma Cluster from Galaxy Kinematics: Breaking the Mass-Anisotropy Degeneracy,” Monthly Notices of the Royal Astronomical Society, Vol. 343, No. 2, 2003, pp. 401-412. doi:10.1046/j.1365-8711.2003.06684.x
[16] G. Cupani, M. Mezzetti and F. Mardirossian, “Cluster Mass Estimation through Fair Galaxies,” Monthly Notices of the Royal Astronomical Society, Vol. 403, No. 2, 2010, pp. 838-847. doi:10.1111/j.1365-2966.2009.16157.x
[17] M. J. Valtonen and G. G. Byrd, “A Binary Model for the Come Cluster of Galaxies,” Astrophysical Journal, Vol. 230, 1979, pp. 655-666. doi:10.1086/157124
[18] M. Sereno, M. Lubini and Ph. Jetzer, “A Multi-Wave-length Strong Lensing Analysis of Baryons and Dark Matter in the Dynamically Active Cluster AC 114,” 2009.
[19] M. Brada et al., “Revealing the Properties of Dark Matter in the Merging Cluster MACSJ0025.4-1222,” Astro- physical Journal, Vol. 687, No. 2, 2008, pp. 959-967.
[20] S. W. Allen, et al., “Improved Constraints on Dark Energy from Chandra X-Ray Observations of the Largest Relaxed Galaxy Clusters,” Monthly Notices of the Royal Astronomical Society, Vol. 383, No. 3, 2008, pp. 879-896. doi:10.1111/j.1365-2966.2007.12610.x
[21] M. Limousin, et al., “Strong Lensing in Abell 1703: Constraints on the Slope of the Inner Dark Matter Distribution,” Astronomy and Astrophysics, Vol. 489, No. 1, 2008, pp. 23-35. doi:10.1051/0004-6361:200809646
[22] A. D. Chernin, et al., “Dark Energy and the Mass of the Local Group,” 2009.
[23] R. B. Tully, “Nearby Groups of Galaxies. II. An All-Sky Survey within 3000 Kilometers per Second,” Astrophysical Journal, Vol. 321, 1984, pp. 280-304. doi:10.1086/165629
[24] I. D. Karachentsev, “Missing Dark Matter in the Local Universe,” 2012.
[25] P. Salucci, et al., “The Universal Rotation Curve of Spiral Galaxies. II. The Dark Matter Distribution Out to the Virial Radius,” Monthly Notices of the Royal Astronomical Society, Vol. 378, No. 1, 2007, pp. 41-47.
[26] A. Bosma and P. C. van der Kruit, “The Local Mass-to-Light Ratio in Spiral Galaxies,” Astronomy and Astrophysics, Vol. 79, No. 3, 1979, pp. 281-286.
[27] G. Gentile, et al., “The Cored Distribution of Dark Matter in Spiral Galaxies,” Monthly Notices of the Royal Astronomical Society, Vol. 351, No. 2, 2004, pp. 903-922. doi:10.1111/j.1365-2966.2004.07836.x
[28] Y. Sofue, M. Honma and T. Omodaka, “Unified Rotation Curve of the Galaxy Decomposition into de Vaucouleurs Bulge, Disk, Dark Halo, and the 9-kpc Rotation Dip,” Publications of the Astronomical Society of Japan, Vol. 61, 2009, p. 227
[29] R. Catena and P. Ullio, “A Novel Determination of the Local Dark Matter Density,” 2009.
[30] M. Weber and W. de Boer, “Determination of the Local Dark Matter Density in Our Galaxy,” Astronomy and Astrophysics, Vol. 509, No. A25, 2010, 10 pages. doi:10.1051/0004-6361/200913381
[31] N. Straumann, “Matter in the Universe,” Space Science Reviews, Vol. 100, No. 1-4. 2002, pp. 29-38. doi:10.1023/A:1015801707999
[32] R. J. Smith, et al., “Discovery of Strong Lensing by an Elliptical Galaxy at z = 0.0345,” Astrophysical Journal Letters, Vol. 625, No. 2, 2005, p. L103. doi:10.1086/431240
[33] R. Massey, et al., “Dark Matter Maps Reveal Cosmic Scaffolding,” Nature, Vol. 445, No. 7125, 2007, pp. 286-290.
[34] R. Massey, T. Kitching and J. Richard, “The Dark Matter of Gravitational Lensing,” Reports on Progress in Physics, Vol. 73, No. 8, 2010, Article ID: 086901. doi:10.1088/0034-4885/73/8/086901
[35] P. J. Humphrey, et al., “The ELIXR Galaxy Survey. II: Baryons and Dark Matter in an Isolated Elliptical Galaxy,” 2012.
[36] O. Tiret, et al., “The Inner Structure of Very Massive Elliptical Galaxies: Implications for the Inside-Out Formation Mechanism of z 2 Galaxies,” 2010.
[37] R. Salinas, et al., “Kinematic Properties of the Field Elliptical NGC 7507,” Astronomy and Astrophysics, Vol. 538, No. A87, 2012, 17 pages. doi:10.1051/0004-6361/201116517
[38] C. Flynn, et al., “On the Mass-to-Light Ratio of the Local Galactic Disk and the Optical Luminosity of the Galaxy,” Monthly Notices of the Royal Astronomical Society, Vol. 372, No. 3, 2006, pp. 1149-1160. doi:10.1111/j.1365-2966.2006.10911.x
[39] R. A. Swaters, et al., “Are Dwarf Galaxies Dominated by Dark Matter?” 2011.
[40] S. J. Penny and C. J. Conselice, “Dwarf Galaxies in Clusters as Probes of Galaxy Formation and Dark Matter,” 2010.
[41] V. Belokurov, et al., “Cats and Dogs, Hair and a Hero: A Quintet of New Milky Way Companions,” Astrophysical Journal, Vol. 654, No. 2, 2007, p. 897. doi:10.1086/509718
[42] H. Baumgardt and S. Mieske, “High Mass-to-Light Ratios of UCDs: Evidence for Dark Matter?” 2008.
[43] M. Xiang-Gruess, Y.-Q. Lou and W. J. Duschl, “Dark Matter Dominated Dwarf Disc Galaxy Segue 1,” 2009.
[44] M. Markevitch, et al., “Mass Profiles of the Typical Relaxed Galaxy Clusters A2199 and A496,” Astrophysical Journal, Vol. 527, No. 2, 1999, p. 545. doi:10.1086/308124
[45] C. De Boni and G. Bertin, “The Relative Concentration of Visible and Dark Matter in Clusters of Galaxies,” Nuovo Cimento B, Vol. 123, 2008, p. 31
[46] Qi Guo, et al., “How Do Galaxies Populate Dark Matter Halos?” Monthly Notices of the Royal Astronomical Society, Vol. 404, No. 3, 2010, pp. 1111-1120.
[47] A. Boyarsky, et al., “New Evidence for Dark Matter,” 2009.
[48] M. Boylan-Konchin, J. S. Bullock and M. Kaplinghat, “The Milky Way’s Bright Satellites as an Apparent Failure of ΛCDM,” 2012.
[49] D. Larson, et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters,” The Astrophysical Journal Supplement Series, Vol. 192 No. 2, 2011, p. 16. doi:10.1088/0067-0049/192/2/16
[50] S. Das, et al., “The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey,” 2010.
[51] J. Dunkley, et al., “The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra,” 2010.
[52] P. G. Castro, et al., “Cosmological Parameters from the QUAD CMB Polarization Experiment,” Astrophysical Journal, Vol. 701, No. 2, 2009, p. 857. doi:10.1088/0004-637X/701/2/857
[53] W. J. Percival, et al., “Measuring the Baryon Acoustic Oscillation Scale Using the SDSS and 2dFGRS,” Monthly Notices of the Royal Astronomical Society, Vol. 381, 2007, p. 1053.
[54] V. Springel, et al., “The Aquarius Project: The Subhalos of Galactic Halos,” Monthly Notices of the Royal Astronomical Society, Vol. 391, No. 4, 2008, pp. 1685-1711. doi:10.1111/j.1365-2966.2008.14066.x
[55] M. Kowalski, et al., “Improved Cosmological Constraints from New, Old and Combined Supernova Datasets,” Astrophysical Journal, Vol. 686, No. 2, 2008, p. 749. doi:10.1086/589937
[56] W. H. Tucker, H. Tananbaum and R. A. Remillard, “1E0657-56: A Contender for the Hottest Known Cluster of Galaxies,” Astrophysical Journal, Vol. 496, No. 1, 1998, p. L5. doi:10.1086/311234
[57] M. Markevitch, et al., “A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E 0657-56,” Astrophysical Journal, Vol. 567, No. 1, 2002, p. L27. doi:10.1086/339619
[58] M. Markevitch, et al., “Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657-56,” Astrophysical Journal, Vol. 606, No. 2, 2004, p. 819. doi:10.1086/383178
[59] D. Clowe, et al., “A Direct Empirical Proof of the Existence of Dark Matter,” Astrophysical Journal, Vol. 648, No. 2, 2006, p. L109. doi:10.1086/508162
[60] D. Clowe, A. Gonzalez and M. Markevitch, “Weak-Len-sing Mass Reconstruction of the Interacting Cluster 1E 0657558: Direct Evidence for the Existence of Dark Matter,” Astrophysical Journal, Vol. 604, No. 2, 2004, p. 596. doi:10.1086/381970
[61] M. Brada, et al., “Strong and Weak Lensing United. I: The Combined Strong and Weak Lensing Cluster Mass Reconstruction Method,” Astronomy and Astrophysics, Vol. 437, 2005, p. 39.
[62] M. Brada , et al., “Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy 1ES 0657-558,” Astrophysical Journal, Vol. 652, No. 2, 2006, p. 937. doi:10.1086/508601
[63] B. Ragozzine, et al., “Weak Lensing Results of the Merging Cluster A1758,” 2011.
[64] H. R. Russell, et al., “Chandra Observation of Two Shock Fronts in the Merging Galaxy Cluster Abell 2146,” Monthly Notices of the Royal Astronomical Society, Vol. 406, 2010, p. 1721
[65] J. Merten, et al., “Creation of Cosmic Structure in the Complex Galaxy Cluster Merger Abell 2744,” 2011.
[66] M. S. Owers, et al., “The Dissection of Abell 2744: A Rich Cluster Growing Through Major and Minor Mergers,” Astrophysical Journal, Vol. 728, No. 1, 2011, p. 27. doi:10.1088/0004-637X/728/1/27
[67] T. A. Marriage, et al., “The Atacama Cosmology Telescope: Sunyaev Zel’dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey,” Astrophysical Journal, Vol. 737, No. 2, 2011, p. 61. doi:10.1088/0004-637X/737/2/61
[68] F. Menenteau, et al., “The Atacama Cosmology Telescope: ACT-CL J0102-4915 El Gordo, a Massive Merging Cluster at Redshift 0.87,” 2012.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.