On Supersymmetry and the Origin of Dark Matter


Dark matter was first suspected in clusters of galaxies when these galaxies were found to move with too high a speed to be retained in the cluster by their gravitational influence on each other. Some current theories favor cold dark matter models where particles are created with low velocity dispersions and thus would become trapped in baryonic gravitational potentials. According to the standard Big-Bang model, dark matter is of nonbaryonic origin, otherwise the observed abundance of helium in the Universe would be violated. In this work, recent theoretical and observational developments are used to form a consistent picture of the events in the early Universe that gave rise to dark matter. According to the model that will be presented in this paper, supersymmetry plays a major role. In addition, the possibility that dark matter evolves in a spacetime manifold different from that of the observed Universe is discussed.

Share and Cite:

Dallal, S. and Azzam, W. (2012) On Supersymmetry and the Origin of Dark Matter. Journal of Modern Physics, 3, 1131-1141. doi: 10.4236/jmp.2012.329148.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Freeman and G. McNamara, “In Search of Dark Matter,” Springer, Berlin, 2006.
[2] F. Zwicky, “The Redshift of Extragalactic Nebulae,” Helvetica Physica Acta, Vol. 6, 1933, pp. 110-127.
[3] J. P. Ostriker, et al., “The Size and Mass of Galaxies, and the Mass of the Universe,” Astrophysical Journal, Vol. 193, 1974, pp. L1-L4. doi:10.1086/181617
[4] S. M. Faber and J. S. Gallagher, “Masses and Mass-to-Light Ratios of Galaxies,” Annual Review of Astronomy and Astrophysics, Vol. 17, No. 1, 1979, pp. 135-187.
[5] M. Davis, et al., “On the Virgo Supercluster and the Mean Mass density of the Universe,” Astrophysical Journal, Vol. 238, 1980, pp. L113-L116. doi:10.1086/183269
[6] V. Trimble, “Existence and Nature of Dark Matter in the Universe,” Annual Review of Astronomy and Astrophysics, Vol. 25, No. 1, 1987, pp. 425-472.
[7] N. A. Bahcall et al., “Where is Dark Matter?” Astrophysical Journal, Vol. 447, 1995, pp. L81-L85.
[8] C. Alcock, et al., “The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations,” Astrophysical Journal, Vol. 542, No. 1, 2000, pp. 281-307. doi:10.1086/309512
[9] P. Tisserand, et al., “Limits on the MACHO Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds,” Astronomy & Astrophysics, Vol. 469, No. 2, 2007, pp. 387-404.
[10] S. Sarkar, “Supersymmetric Inflation and Large-Scale Structure,” 1996.
[11] D. N. Schramm and M. S. Turner, “Big-Bang Nucleosynthesis Enters the Precision Era,” Reviews of Modern Physics, Vol. 70, No. 1, 1998, pp. 303-318.
[12] K. Jedamzik and M. Pospelov, “Big Bang Nucleosynthesis and Particle Dark Matter,” New Journal of Physics, Vol. 11, 2009, Article ID: 105028.
[13] D. Clowe, et al., “A Direct Empirical Proof of the Existence of Dark Matter,” Astrophysical Journal, Vol. 648, No. 2, 2006, pp. L109-L113.doi:10.1086/508162
[14] B. Nodland and J. P. Ralston, “Indication of Anistropy in Electromagnetic Propagation over Cosmological Distances,” Physical Review Letters, Vol. 78, No. 16, 1997, pp. 3043-3046.
[15] L. S. Schulman, “Opposite Thermodynamic Arrows of Time,” Physical Review Letters, Vol. 83, No. 26, 1999, pp. 5419-5422.
[16] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophysical Journal, Vol. 86, 1937, pp. 217- 246. doi:10.1086/143864
[17] V. Rubin, N. Thonnard and W. K. Ford Jr., “Rotation Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc),” Astrophysical Journal, Vol. 238, 1980, pp. 471-487. doi:10.1086/158003
[18] S. M. Faber and R. E. Jackson, “Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies,” Astrophysical Journal, Vol. 204, 1976, pp. 668-683. doi:10.1086/154215
[19] X.-P. Wu, T. Chiueh, L.-Z. Fang, and Y.-J. Xue, “A Comparison of Different Cluster Mass Estimates: Consistency or Discrepancy?” Monthly Notices of the Royal Astronomical Society, Vol. 301, No. 3, 1998, pp. 861-871.doi:10.1046/j.1365-8711.1998.02055.x
[20] N. W. Boggess, et al., “The COBE Mission: Its Design and Performance Two Years after the Launch,” Astrophysical Journal, Vol. 397, No. 2, 1992, pp. 420-429. doi:10.1086/171797
[21] A. Melchiorri, et al., “A Measurement of W from the North American Test Flight of Boomerang,” The Astrophysical Journal Letters, Vol. 536, No. 2, 2000, pp. L63-L66. doi:10.1086/312744
[22] E. M. Leitch, et al., “Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results,” Astrophysical Journal, Vol. 624, No. 2, 2005, pp. 10-20. doi:10.1086/428825
[23] A. C. S. Readhead, et al., “Polarization Observations with the Cosmic Background Imager,” Science, Vol. 306 No. 5697, 2004, pp. 836-844.
[24] G. Hinshaw, et al., “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results,” Astrophysical Journal Supplement Series, Vol. 180, No. 2, 2009, pp. 225-245. doi:10.1088/0067-0049/180/2/225
[25] E. Komatsu, et al., “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation,” Astrophysical Journal Supplement Series, Vol. 180, No. 2, 2009, pp. 330-376. doi:10.1088/0067-0049/180/2/330
[26] V. Springle, et al., “Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars,” Nature, Vol. 435, 2005, pp. 629-636.
[27] J. R. Primack and D. Seckel, “Detection of Cosmic Dark Matter,” Annual Review of Astronomy and Astrophysics, Vol. 38, 1988, pp. 751-807.
[28] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Pseudoparticles,” Physical Review Letters, Vol. 38, No. 25, 1977, pp. 1440-1443.
[29] J. L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Annual Review of Astronomy and Astrophysics, Vol. 48, 2010, pp. 495-545.
[30] G. G. Raffelt, “Astrophysical Axion Bounds,” Lecture Notes in Physics, Vol. 741, 2008, pp. 51-71.
[31] P. Sikivie and Q.Yang, “Bose-Einstein Condensation of Dark Matter Axions,” Physical Review Letters, Vol. 103, No. 11, 2009, Article ID: 111301.
[32] C. Robilliard, et al., “No Light Shining through a Wall: Results from a Photore Generation Experiment,” Physical Review Letters, Vol. 99, No. 19, 2007, p. 190403.
[33] K. J. Mack and P. J. Steinhardt, “Cosmological Problems with Multiple Axion-Like Fields,” The Journal of Cosmology and Astroparticle Physics, Vol. 5, 2011, p. 1.
[34] A. Renzini, “Effects of Cosmions in the Sun and in Globular Cluster Stars,” Astronomy & Astrophysics, Vol. 171, No. 1-2, 1987, pp. 121-122.
[35] Y. Fukuda, et al., “Evidence for Oscillation of Atmospheric Neutrinos,” Physical Review Letters, Vol. 81, No. 8, 1998, pp. 1562-1567.
[36] Q. R. Ahmad, et al., “Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory,” Physical Review Letters, Vol. 89, 2002, Article ID: 011301.
[37] P. C. McGuire and P. Steinhardt, “Cracking Open the Window for Strongly Interacting Massive Particles as the Halo Dark Matter,” 2001, arXiV:astro-ph/0105567v1.
[38] H. Pagels and J. P. Primack, “Supersymmetry, Cosmology, and New Physics at TeraElectronvolt Energies,” Physical Review Letters, Vol. 48, No. 4, 1982, pp. 223- 226.
[39] G. Blumenthal, et al., “Galaxy Formation by Dissipationless Particles Heavier than the Neutrino,” Nature, Vol. 299, 1982, pp. 37-38.
[40] T. Moroi, et al., “Cosmological Constraints on the Light Stable Gravitino,” Physics Letters B, Vol. 303, 1993, pp. 289-294.
[41] N. Okada and O. Seto, “A Brane World Cosmological Solution to the Gravitino Problem,” Physical Review D, Vol. 71, 2005, Article ID: 023517.
[42] A. de Gouvea, et al., “Cosmology of Supersymmetric Models with Low-Energy Gauge Mediation,” Physical Review D, Vol. 56, 1997, pp. 1281-1299.
[43] F. Takayama and M. Yamaguchi, “Gravitino Dark Matter without R-Parity,” Physics Letters B, Vol. 485, No. 4, 2000, pp. 388-392. doi:10.1016/S0370-2693(00)00726-7
[44] T. Falk, et al., “Heavy Sneutrinos as Dark Matter,” Physics Letters B, Vol. 339, No. 3, 1994, pp. 248-251. doi:10.1016/0370-2693
[45] C. Arina and N. Fornengo, “Sneutrino Cold Dark Matter, a New Analysis: Relic Abundance and Detection Rates,” Journal of High Energy Physics, Vol. 11, 2007, p. 29.
[46] D. G. Cerde?o, et al., “Very Light Right-Handed Sneutrino Dark Matter in the NMSSM,” Journal of Astronomy and Astroparticle Physics, Vol. 11, 2011, p. 27.
[47] B. Dumont, et al., “Mixed Sneutrino Dark Matter in Light of the 2011 XENON and LHC Results,” 2012. arXiv:1206.1521.
[48] H. Goldberg, “Constraint on the Photino Mass from Cosmology,” Physical Review Letters, Vol. 50, No. 19, 1983, pp. 1419-1422.
[49] J. Ellis, et al., “Towards a Supersymmetric Cosmology,” Physics Letters B, Vol. 147, No. 1-3, 1984, pp. 27-33. doi:10.1016/0370-2693
[50] S. Dodelson and L. M. Widrow, “Sterile Neutrinos as Dark Matter,” Physical Review Letters, Vol. 72, 1994, pp. 17-20. doi:10.1103/PhysRevLett.72.17
[51] L. M. Krauss, “New Constraints on ‘INO’ Masses from Cosmology (I). Supersymmetric INOS,” Nuclear Physics B, Vol. 227, No. 3, 1983, pp. 556-569. doi:10.1016/0550-3213
[52] D. V. Nanopoulos, et al., “After Primordial Inflation,” Physics Letters B, Vol. 127, No. 1-2, 1983, pp. 30-34. doi:10.1016/0370-2693
[53] R. Juszkiewicz, et al., “Constraints on Cosmologically Regenerated Gravitinos,” Physics Letters B, Vol. 158, No. 6, 1985, pp. 463-467.doi:10.1016/0370-2693
[54] M. Bolz, et al., “Thermal Production of Gravitinos,” Nuclear Physics B, Vol. 606, No. 1-2, 2001, pp. 518-544. doi:10.1016/S0550-3213
[55] J. L. Feng, et al., “Graviton Cosmology in Universal Extra Dimensions,” Physical Review D, Vol. 68, No. 8, 2003, Article ID: 085018.
[56] J. R. Ellis, et al., “Prospects for Sparticle Discovery in Variants of the MSSM,” Physics Letters B, Vol. 603, No. 1, 2004, pp. 51-62.
[57] K. Rajagopal, et al., “Cosmological Implications of Axinos,” Nuclear Physics B, Vol. 358, No. 2, 1991, pp. 447-470. doi:10.1016/0550-3213
[58] L. Covi, et al., “Axinos as Dark Matter,” Journal of High Energy Physics, Vol. 5, No. 8, 2001, p. 33.
[59] H. Baer and A. D. Box, “Fine-Tuning Favors Mixed Axion/Axino Cold Dark Matter over Neutralinos in the Minimal Supergravity Model,” European Physical Journal C, Vol. 68, No. 3, 2010, pp. 523-537.
[60] J. Cembranos, et al., “Resolving Cosmic Gamma Ray Anomalies with Dark Matter Decaying Now,” Physical Review Letters, Vol. 99, No. 9, 2007,Article ID: 191301.
[61] H. C. Cheng, et al., “Kaluza-Klein Dark Matter,” Physical Review Letters, Vol. 89, 2002, Article ID: 211301.
[62] G. Servant and T. M. T. Tait, “Is the Lightest Kaluza-Klein Particle a Viable Dark Matter Candidate?” Nuclear Physics B, Vol. 650, No. 1-2, 2003, pp. 391-419. doi:10.1016/S0550-3213(02)01012-X
[63] S. W. Hawking, “Gravitationally Collapsed Objects of Very Low Mass,” Monthly Notices of the Royal Astronomical Society, Vol. 152, 1971, p. 75.
[64] S. W. Hawking, “Particle Creation by Black Holes,” Communications in Mathematical Physics, Vol. 43, No. 3, 1971, pp. 199-220.
[65] S. W. Hawking, “Black Hole Explosions?” Nature, Vol. 248, No. 5443, 1974, pp. 30-31.
[66] D. N. Page, “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole,” Physical Review D, Vol. 13, 1976, pp. 198-206.
[67] R. Hadgedron, “Statistical Thermodynamics of Strong Interactions at High Energies,” Nuovo Cimento, Vol. 3, 1965, pp. 147-186.
[68] D. B. Cline and D. A. Sanders, “Further Evidence for Some Gamma-Ray Bursts Consistent with Primordial Black Hole Evaporation,” Astrophysical Journal, Vol. 486, No. 1, 1997, pp. 169-178. doi:10.1086/304480
[69] S. Al Dallal, “Primordial Black Holes and Holeums as Progenitors of Galactic Diffuse Gamma-Ray Background,” Advances in Space Research, Vol. 46, No. 4, 2010, pp. 468-471. doi:10.1016/j.asr.2010.05.005
[70] D. B. Cline, “A Gamma-Ray Halo ‘Glow’ from Primordial Black Hole Evaporation,” Astrophysical Journal, Vol. 501, No. 1, 1998, pp. L1-L3. doi:10.1086/311433
[71] J. L. Osborne, et al., “The Diffuse Flux of Energetic Extragalactic Gamma Rays,” Journal of Physics G, Vol. 20, No. 7, 1994, pp. 1089-1101.
[72] D. D. Dixon, et al., “Evidence for a Galactic Gamma-Ray Halo,” New Astronomy, Vol. 3, No. 7, 1998, pp. 539-561. doi:10.1016/S1384-1076
[73] L. K. Chavda and A. L. Chavda, “Dark Matter and Stable Bound States of Primordial Black Holes,” Classical and Quantum Gravity, Vol. 19, No. 11, 2002, pp. 2927-2938. doi:10.1088/0264-9381/19/11/311
[74] B. Paczynski, “Gravitational Microlensing by the Galactic Halo,” Astrophysical Journal, Vol. 304, 1986, pp. 1-5. doi:10.1086/164140
[75] D. S. Graff and K. Frees, “Analysis of a Hubble Space Telescope Search for Red Dwarfs: Limits on Baryonic Matter in the Galactic Halo,” The Astrophysical Journal Letters, Vol. 456, No. 1, 1996, p. L49. doi:10.1086/309850
[76] J. R. Najita, et al., “From Stars to Superplanets: The Low-Mass Initial Mass Function in the Young Cluster IC 348,” Astrophysical Journal, Vol. 541, No. 2, 2000, pp. 977-1003. doi:10.1086/309477
[77] I. A. Bond, et al., “OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event,” The Astrophysical Journal Letters, Vol. 606, No. 2, 2004, pp. L155-L158. doi:10.1086/420928
[78] A. Udalski, et al., “A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071,” The Astrophysical Journal Letters, Vol. 628, No. 2, 2005, pp. L109-L112. doi:10.1086/432795
[79] A. Gould, et al., “Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common,” The Astrophysical Journal Letters, Vol. 644, No. 1, 2006, pp. L37-L40. doi:10.1086/505421
[80] B. S. Gaudi, et al., “Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing,” Science, Vol. 319, No. 5865, 2008, pp. 927-930.
[81] M. Milgrom, “A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis,” Astrophysical Journal, Vol. 270, 1983, pp. 365-370. doi:10.1086/161130
[82] M. Milgrom, “A Modification of the Newtonian Dynamics-Implications for Galaxies,” Astrophysical Journal, Vol. 270, 1983, pp. 371-389. doi:10.1086/161131
[83] R. H. Sanders, “Modified Newtonian Dynamics and its Implications,” Proceedings of the Space Telescope Science Institute Symposium, Baltimore, 2-5 May 2001, p. 62.
[84] L. Smolin, “The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next,” Houghton Mifflin Co., New York, 2006.
[85] R. Wojtak, et al., “Gravitational Redshift of Galaxies in Clusters as Predicted by General Relativity,” Nature, Vol. 477, No. 7366, 2011, pp. 567-569.
[86] J. D. Bekenstein, “The Modified Newtonian Dynamics-MOND-and Its Implications for New Physics,” Contemporary Physics, Vol. 47, No. 6, 2006, p. 387. doi:10.1080/00107510701244055
[87] J. Moffat, “Gravitational Theory, Galaxy Rotation Curves and Cosmology without Dark Matter,” Journal of Cosmology and Astroparticle Physics, Vol. 5, 2005, p. 3.
[88] P. D. Mannheim, “Alternatives to Dark Matter and Dark Energy,” Progress in Particle and Nuclear Physics, Vol. 56, 2006, pp. 340-445.
[89] D. J. Gross, et al., “Heterotic String Theory: (II). The Interacting Heterotic String,” Nuclear Physics B, Vol. 267, No. 1, 1986, pp. 75-124. doi:10.1016/0550-3213(86)90146-X
[90] L. van Wawebeck, et al., “Detection of Correlated Galaxy Ellipticities on CFHT Data: First Evidence for Gravitational Lensing by Large Scale Structures,” Astronomy & Astrophysics, Vol. 358, No. 1, 2000, pp. 30-44.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.