的高度是否为0来判断是否显示返回头部模块 $(window).scroll(function () { var top = $(window).scrollTop(); if (top > 0) { $("#scrolltop").fadeIn("slow"); } else { $("#scrolltop").fadeOut("slow"); } }); //点击返回头部效果 $("#scrolltop").click(function () { $("html,body").animate({ scrollTop: 0 }); }); });
AM> Vol.3 No.9, September 2012
Share This Article:
Cite This Paper >>

Explicit Inversion for Two Brownian-Type Matrices

Abstract Full-Text HTML XML Download Download as PDF (Size:144KB) PP. 1068-1073
DOI: 10.4236/am.2012.39157    3,123 Downloads   4,697 Views  
Author(s)    Leave a comment
Florendia Valvi, Vassilis Geroyannis

Affiliation(s)

Department of Mathematics, University of Patras, Patras, Greece.
Department of Physics, University of Patras, Patras, Greece.

ABSTRACT

We present explicit inverses of two Brownian-type matrices, which are defined as Hadamard products of certain already known matrices. The matrices under consideration are defined by 3n - 1 parameters and their lower Hessenberg form inverses are expressed analytically in terms of these parameters. Such matrices are useful in the theory of digital signal processing and in testing matrix inversion algorithms.

KEYWORDS

Brownian Matrix; Hadamard Product; Hessenberg Matrix; Numerical Complexity; Test Matrix

Cite this paper

F. Valvi and V. Geroyannis, "Explicit Inversion for Two Brownian-Type Matrices," Applied Mathematics, Vol. 3 No. 9, 2012, pp. 1068-1073. doi: 10.4236/am.2012.39157.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. J. Herbold, “A Generalization of a Class of Test Matrices,” Mathematics of Computation, Vol. 23, 1969, pp. 823-826. doi:10.1090/S0025-5718-1969-0258259-0
[2] F. N. Valvi, “Explicit Presentation of the Inverses of Some Types of Matrices,” IMA Journal of Applied Mathematics, Vol. 19, No. 1, 1977, pp. 107-117. doi:10.1093/imamat/19.1.107
[3] M. J. C. Gover and S. Barnett, “Brownian Matrices: Properties and Extensions,” International Journal of Systems Science, Vol. 17, No. 2, 1986, pp. 381-386. doi:10.1080/00207728608926813
[4] B. Picinbono, “Fast Algorithms for Brownian Matrices,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 31, No. 2, 1983, pp. 512-514. doi:10.1109/TASSP.1983.1164078
[5] G. Carayannis, N. Kalouptsidis and D. G. Manolakis, “Fast Recursive Algorithms for a Class of Linear Equations,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 30, No. 2, 1982, pp. 227-239. doi:10.1109/TASSP.1982.1163876
[6] H. W. Milnes, “A Note Concerning the Properties of a Certain Class of Test Matrices,” Mathematics of Computation, Vol. 22, 1968, pp. 827-832. doi:10.1090/S0025-5718-1968-0239743-1
[7] R. T. Gregory and D. L. Karney, “A Collection of Matrices for Testing Computational Algorithms,” Wiley-Interscience, London, 1969.

  
comments powered by Disqus
AM Subscription
E-Mail Alert
AM Most popular papers
Publication Ethics & OA Statement
AM News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.