Share This Article:

Heterogeneity in femA in the Indian Isolates of Staphylococcus aureus Limits Its Usefulness as a Species Specific Marker

Abstract Full-Text HTML Download Download as PDF (Size:117KB) PP. 82-88
DOI: 10.4236/aid.2012.23013    4,128 Downloads   7,977 Views   Citations

ABSTRACT

Increase in prevalence of MRSA worldwide and hence the need for rapid detection, have led to use of molecular methods for confirmation of the species and also MRSA. Species specific markers like fem or nuc along with the methicillin-resistance determinant, mecA, have been used by several investigators worldwide for the identification of MRSA. In the current study, we have screened 54 microbiologically confirmed (MRSA, MSSA and CoNS) isolates for the presence of mecA, 16S rRNA, femA and nuc markers. While mecAPCR and 16S rRNAPCR results were consistent with other studies, femA and nuc showed dramatic variation in detection rate (sensitivity) of S. aureus 29.6% and 53.7% respectively. Evidences are presented to demonstrate the absence of femA. Our attempt to amplify the complete femA gene using sequences flanking femA further confirmed these results and also indicated that variations exist even in the genomic sequences around femA. Our data reveals the need for exercising care while using primers designed on sequences of constitutive genes like femA and nuc for PCR based identification of S. aureus species. Though geographic variations in the genome of S. aureus have previously been reported from around the world, we present here evidence for the first time from India for absence of femA and also for probable variations in the sequences around the femA gene in clinical isolates of S. aureus.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Chikkala, N. Oommen George, K. S. Ratnakar, R. Natarajan Iyer and V. Sritharan, "Heterogeneity in femA in the Indian Isolates of Staphylococcus aureus Limits Its Usefulness as a Species Specific Marker," Advances in Infectious Diseases, Vol. 2 No. 3, 2012, pp. 82-88. doi: 10.4236/aid.2012.23013.

References

[1] A. F. Shorr, “Epidemiology of Staphylococcal Resistance,” Clinical Infectious Diseases, Vol. 45, No. 3, 2007, pp. S171-S176. doi:10.1086/519473
[2] S. K. Mallick and S. Basak, “MRSA—Too Many Hurdles to Overcome: A Study from Central India,” Tropical Doctor, Vol. 40, No. 2, 2010, pp. 108-110. doi:10.1258/td.2010.090440
[3] H. F. Chambers and F. R. DeLeo, “Waves of Resistance: Staphylococcus aureus in the Antibiotic Era,” Nature Reviews Microbiology, Vol. 7, No. 9, 2009, pp. 629-641. doi:10.1038/nrmicro2200
[4] M. Jevons, “Celbenin-Resistant Staphylococci,” British Medical Journal, Vol. 1, No. 5219, 1961, pp. 124-125. doi:10.1136/bmj.1.5219.124-a
[5] S. Stefani, D. R. Chung, J. A. Lindsay, et al., “MeticillinResistant Staphylococcus aureus (MRSA): Global Epidemiology and Harmonisation of Typing Methods,” International Journal of Antimicrobial Agents, Vol. 39, No. 4, 2012, pp. 273-282. doi:10.1016/j.ijantimicag.2011.09.030
[6] W. D. Beck, B. Berger-Bachi and F. H. Kayser, “Additional DNA in Methicillin-Resistant Staphylococcus aureus and Molecular Cloning of mec Specific DNA,” Journal of Bacteriology, Vol. 165, No. 2, 1986, pp. 373-378.
[7] D. Lim and N. C. Strynadka, “Structural Basis for the Beta Lactam Resistance of PBP2a from Methicillin-Resistant Staphylococcus aureus,” Nature Structural & Molecular Biology, Vol. 9, No. 11, 2002, pp. 870-876.
[8] T. Ito, K. Okuma, X. X. Ma, H. Yuzawa and K. Hiramatsu, “Insights on Antibiotic Resistance of Staphylococcus aureus from Its Whole Genome: Genomic Island SCC,” Drug Resistance Updates, Vol. 6, No. 1, 2003, pp. 41-52. doi:10.1016/S1368-7646(03)00003-7
[9] A Turlej, W. Hryniewicz and J. Empel, “Staphylococcal Cassette Chromosome mec (SCCmec) Classification and Typing Methods: An Overview,” Polish Journal of Microbiology, Vol. 60, No. 2, 2011, pp. 95-103.
[10] S. S. Hegde and T. E. Shrader, “FemABX Family Members Are Novel Nonribosomal Peptidyltransferases and Important Pathogen-Specific Drug Targets,” The Journal of Biological Chemistry, Vol. 276, No. 10, 2001, pp. 6998-7003. doi:10.1074/jbc.M008591200
[11] H. Ton-That, H. Labischinski, B Berger-Bachi and O. Schneewind, “Anchor Structure of Staphylococcal Surface Proteins: III Role of the femA, femB, and femX Factors in Anchoring Surface Proteins to the Bacterial Cell Wall,” The Journal of Biological Chemistry, Vol. 273, No. 44, 1998, pp. 29143-29149. doi:10.1074/jbc.273.44.29143
[12] P. U. Krishnan, K. Miles and N. Shetty, “Detection of Methicillin and Mupirocin Resistance in Staphylococcus aureus Isolates Using Conventional and Molecular Methods: A Descriptive Study from a Burns Unit with High Prevalence of MRSA,” Journal of Clinical Pathology, Vol. 55, No. 10, 2002, pp. 745-748. doi:10.1136/jcp.55.10.745
[13] K. Murakami, W. Minamide, K. Wada, E. Nakamura, E. Teraoka and S. Watanabe, “Identification of MethicillinResistant Strains of Staphylococci by Polymerase Chain Reaction,” Journal of Clinical Microbiology, Vol. 29, No. 10, 1991, pp. 2240-2244.
[14] N. Kobayashi, H. Wu, K. Kojima, et al., “Detection of mecA, femA, and femB Genes in Clinical Strains of Staphylococci Using Polymerase Chain Reaction,” Epidemiology & Infection, Vol. 113, No. 2, 1994, pp. 259-266. doi:10.1017/S0950268800051682
[15] O. G. Brakstad, K. Aasbakk and J. A. Maeland, “Detection of Staphylococcus aureus by Polymerase Chain Reaction Amplification of the nuc Gene,” Journal of Clinical Microbiology, Vol. 30, No. 7, 1992, pp. 1654-1660.
[16] Y. Cai, F. Kong, Q. Wang, et al., “Comparison of Singleand Multi-Locus Sequence Typing and Toxin Gene Profiling for Characterization of Methicillin-Resistant Staphylococcus aureus,” Journal of Clinical Microbiology, Vol. 45, No. 10, 2007, pp. 3302-3308. doi:10.1128/JCM.01082-07
[17] Z. Hussain and M. A. John, “Failure of a PCR Screening Method to Detect MRSA,” Infection Control and Hospital Epidemiology, Vol. 21, No. 10, 2000, pp. 627-628. doi:10.1086/503240
[18] V. Sritharan and R. H. Barker Jr., “A Simple Method for Diagnosing M. Tuberculosis Infection in Clinical Samples Using PCR,” Molecular and Cellular Probes, Vol. 5, No. 5, 1991, pp. 385-395. doi:10.1016/S0890-8508(06)80011-3
[19] H. Al-Talib, Y. Y. Chan, A. Alyaa, et al., “A Pentaplex PCR Assay for the Detection of Methicillin-Resistant Staphylococcus aureus and Panton-Valentine Leucocidin,” BMC Microbiology, Vol. 9, No. 1, 2009, p. 113.
[20] A. B. Poulsen, R. Skov and L. V. Pallesen, “Detection of Methicillin Resistance in Coagulase-Negative Staphylococci and in Staphylococci Directly from Simulated Blood Cultures Using the EVIGENE MRSA Detection Kit,” Journal of Antimicrobial Chemotherapy, Vol. 51, No. 2, 2003, pp. 419-421. doi:10.1093/jac/dkg084
[21] K. C. Carroll, “Rapid Diagnostics for Methicillin-Resistant Staphylococcus aureus: Current Status,” Molecular Diagnosis & Therapy, Vol. 12, No. 1, 2008, pp. 15-24. doi:10.1007/BF03256265
[22] P. Vannuffel, J. Gigi, H. Ezzedine, et al., “Specific Detection of Methicillin-Resistant Staphylococcus Species by Multiplex PCR,” Journal of Clinical Microbiology, Vol. 33, No. 11, 1995, pp. 2864-2867.
[23] L. Louie, J. Goodfellow, P. Mathieu, A. Glatt, M. Louie and A. E. Simor, “Rapid Detection of Methicillin-Resistant Staphylococci from Blood Culture Bottles by Using a Multiplex PCR Assay,” Journal of Clinical Microbiology, Vol. 40, No. 8, 2002, pp. 2786-2790. doi:10.1128/JCM.40.8.2786-2790.2002
[24] A. A. Mathews, M. Thomas, B. Appalaraju and J. Jayalakshmi. “Evaluation and Comparison of Tests to Detect Methicillin Resistant S. aureus,” Indian Journal of Pathology & Microbiology, Vol. 53, No. 1, 2010, pp. 79-82. doi:10.4103/0377-4929.59189
[25] S. P. Chakraborty, S KarMahapatra, M. Bal and S. Roy, “Isolation and Identification of Vancomycin Resistant Staphylococcus aureus from Post Operative Pus Sample,” Al Ameen Journal of Medical Sciences, Vol. 4, No. 2, 2010, pp. 152-168.
[26] I. Janwithayanuchit, S. Ngamululert, P Paungmoung and W. Rangsipanuratn, “Epidemiologic Study of methicillinResistant Staphylococcus aureus by Coagulase Gene Polymorphism,” Science Asia, Vol. 32, 2006, pp. 127-132. doi:10.2306/scienceasia1513-1874.2006.32.127
[27] A. Schwarzkope and H. Karch, “Genetic Variation in Staphylococcus Coagulase Gene: Potential and Limits for Use as Epidemiological Marker,” Journal of Clinical Microbiology, Vol. 32, No. 10, 1994, pp. 2407-2412.
[28] N. Kobayashi, K. Taniguchi, K. Kojima, S. Urasawa, N. Uchara and Y. Omize, “Analysis of Methicillin-Resistant Staphylococcus aureus by a Molecular Typing Method Based on Coagulase Gene Polymorphisms,” Epidemiology & Infection, Vol. 115, No. 3, 1995, pp. 419-426. doi:10.1017/S095026880005857X
[29] T. Baba, F. Takeuchi, M. Kuroda, et al., “Genome and Virulence Determinants of High Virulence CommunityAcquired MRSA,” Lancet, Vol. 359, No. 9320, 2002, pp. 1819-1827. doi:10.1016/S0140-6736(02)08713-5
[30] A. Grundling, D. M. Missiakas and O. Schneewind, “Staphylococcus aureus Mutants with Increased Lypostaphin Resistance,” Journal of Bacteriology, Vol. 188, No. 17, 2006, pp. 6286-6297. doi:10.1128/JB.00457-06
[31] S. Giannouli, M. Labrou, A. Kyritsis, et al., “Detection of Mutations in the FemXAB Protein Family in OxacillinSusceptible mecA-Positive Staphylococcus aureus clinical Isolates,” Journal of Antimicrobial Chemotherapy, Vol. 65, No. 4, 2010, pp. 626-633. doi:10.1093/jac/dkq039

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.