Assessment of Genetic Diversity of Moroccan Cultivated Almond (Prunus dulcis Mill. DA Webb) in Its Area of Extreme Diffusion, Using Nuclear Microsatellites


Assessment of genetic diversity of Moroccan cultivated almond (Prunus dulcis Mill.) grown from seed and cultivated at four eco-geographical regions was performed using 16 nuclear SSRs. 238 alleles were detected with an average of 14.88 alleles per locus, ranging from 4 (locus BPPCT027) to 24 (locus CPSCT018). The size of alleles ranged from 84 bp (locus UDP96-003) to 253 bp (locus UDP96-018). A high genetic diversity of the local almonds is apparent and structured into three major clusters (Oasis cluster, High and Anti Atlas cluster, and Middle Atlas cluster). Compared to the Mediterranean genetic pools, from the East to West, the genetic diversity tends to be limited in Morocco which is the area of its extreme diffusion.

Share and Cite:

A. Elhamzaoui, A. Oukabli, J. Charafi and M. Moumni, "Assessment of Genetic Diversity of Moroccan Cultivated Almond (Prunus dulcis Mill. DA Webb) in Its Area of Extreme Diffusion, Using Nuclear Microsatellites," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1294-1303. doi: 10.4236/ajps.2012.39156.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Grasselly, “Origine et Evolution de l’Amandier Cultivé,” CIHEAM-IAMZ, Options Méditerranéennes, Vol. 32, 1976, pp. 45-49.
[2] R. Sociasi Company, “Fruit Tree Genetics at a Turning Point: The Almond Example,” Theoretical and Applied Genetics, Vol. 96, No. 5, 1998, pp. 588-601. doi:10.1007/s001220050777
[3] P. Spiegel-Roy, “Domestication of Fruit Trees,” In: C. Barigozzi, Ed., The Origin and Domestication of Cultivated Plants, Elsevier, Amsterdam, 1986, pp. 201-211.
[4] C. Grasselly and P. Crossa-Raynaud, “L’Amandier. Techniques Agricoles et Productions Méditerranéennes,” G.P. Maison neuve et Larose, Paris, XII, 1980.
[5] M. Delplancke, “Histoire Evolutive de l’Amandier Cultivé (Prunus dulcis) en Méditerranée: Regards Croisés sur la Domestication, Dialogue Entre la Biologie et l’Ethnobiologie, Biologie des Populations,” Université Montpellier 2, Montpellier, 2011.
[6] N. I. Vavilov, “Wild Progenitors of the Fruit Trees of Turkestan and the Caucasus and the Problem of the Origin of Fruit Trees,” Proceedings of the 9th International Horticultural Congress, London, 1930, pp. 271-286.
[7] D. Zohary and M. Hopf, “Domestication of Plants in the Old World,” Clarendon Press, Oxford, 1993.
[8] D. Cerdá, “Economía Antigua de Mallorca,” In: J. Mascaró Pasarius, Ed., Historia de Mallorca, Vol. I, Pasarius, Palma de Mallorca, Spain, 1973, pp. 417-448.
[9] M. Zeinalabedini, M. Khayam-Nekoui, V. Grigorian, T. M. Gradziel and P. Martínez-Gómezd, “The Origin and Dissemination of the Cultivated Almond as Determined by Nuclear and Chloroplast SSR Marker Analysis,” Scientia Horticulturae, Vol. 125, No. 4, 2010, pp. 593-601. doi:10.1016/j.scienta.2010.05.007
[10] D. E. Kester, T. M. Gradziel and C. Grasselly, “Almonds (Prunus),” In: J. N. Moore and H. J. Ballington, Eds., Genetic Resources of Temperate Fruit and Nut Crops, International Society for Horticultural Science, The Netherlands, 1991, pp. 701-758.
[11] A. J. Felipe,“Variedades de Almendro,” In: Integrum, Ed., El Almendro, Zaragoza, Spain, 2000, pp. 204-279.
[12] N. El-Khatib-Boujibar, “Le Maroc et Carthage,” Le Mémorial du Maroc (I), Nord organizationEdition, 1983, p. 140.
[13] DDFP, “Bilan Annuel des Rosacées Fruitières,” Direction de Développement des Filières de Productions, Ministre de l’Agriculture et de la Pêche Maritime, Maroc, 2011.
[14] A. Oukabli, A. Mamouni, M. Laghezali, A.Chahbar, A. Mekkaoui, M. Lahlou and A. Bari, “Caractérisation de la Diversité Genétique des Populations Locales d’Amandier Cultivé [Prunus dulcis (Miller) D. A. Webb] au Maroc,” Proceeding IV Journées Nationales de Biodiversité, Tetouan, Maroc, 2008.
[15] N. I. Vavilov, “Studies on the Origin of Cultivated Plants,” Leningrad, 1926, p. 248.
[16] G. Barbeau and A. Elbouami, “Les Hybrides Amandier x Pêcher Naturels du sud Marocain,” Fruits, Vol. 35, No. 3, 1980, pp. 171-176.
[17] M. Laghezali, “L’amandier au Maroc,” Options Méditerranéennes, Edition IAMZ, Vol. 85, No. I, 1985, pp. 91-95.
[18] A. Lansari, A. F. Iezzoni and D. E. Kester, “Morphological Variation within Collections of Moroccan Almond Clones and Mediterranean and North American Cultivars,” Euphytica, Vol. 78, No. 1-2, 1994, pp. 27-41.
[19] A. Oukabli, “Almond Breeding in Morocco: A Chronological Perspective,” NUCIS FAO-CIHEAM, Vol. 15, 2011, pp. 4-7.
[20] K. Sorkheh, B. Shiran, T. M. Gradziel, B. K. Epperson, P. Martínez-Gómez and E. Asadi, “Amplified Fragment Length Polymorphism as a Tool for Molecular Characterization of Almond Germplasm: Genetic Diversity among Cultivated Genotypes and Related Wild Species of Almond, and Its Relationships with Agronomic Traits,” Euphytica, Vol. 156, No. 3, 2007, pp. 327-344. doi:10.1007/s10681-007-9382-x
[21] K. Sorkheh, B. Shiran,V. Rouhi, E. Asadi, H. Jahanbazi, H. Moradi, T. M. Gradziel and P. Martínez-Gómez, “Phenotypic Diversity within Native Iranian Almond Species and Their Breeding Potential,” Genetic Resources and Crop Evolution, Vol. 56, No. 7, 2009, pp. 947-96. doi:10.1007/s10722-009-9413-7
[22] M. Zeinalabedini, K. Majourhat, V. Grigorian, M. Torchi, F. Dicenta, P. Martínez-Gómez, “Comparison of the Use of Morphological, Protein and DNA Markers in the Genetic Characterization of Iranian Wild Prunus Species,” Scientia Horticulturae, Vol. 116, No. 1, 2008, pp. 80-88. doi:10.1016/j.scienta.2007.10.022
[23] S. Arulsekar, D. E. Parfitt and D. E. Kester, “Comparison of Isozyme Variability in Peach and Almond Cultivars,” Journal of Heredity, Vol. 77, No. 4, 1986, pp. 272-274.
[24] R. Hauagge, D. E. Kester, S. Arulsekar, D. E. Parfitt and L. Liu, “Isozyme Variation among California almond Cultivars. II. Cultivar Characterization and Origins,” Journal of the American Society for Horticultural Science, Vol. 112, 1987, pp. 693-698.
[25] M. Cerezo, R. Sociasi Company and F. Vargas, “Identification of almond Cultivars by Pollen Isoenzymes,” Journal of the American Society for Horticultural Science, Vol. 114, 1989, pp. 164-169.
[26] J. F. Jackson and G. R. Clarke, “Gene Flow in an Almond Orchard,” Theoretical and Applied Genetics, Vol. 82, No. 2, 1991, pp. 169-173. doi:10.1007/BF00226208
[27] P. Arús, C. Olarte, M. Romero and F. Vargas, “Linkage Analysis of Ten Isozyme Genes in F1 Segregating Almond Progenies,” Journal of the American Society for Horticultural Science, Vol. 119, 1994, pp. 339-34.
[28] M. A. Viruel, R. Messeguer, M. C. de Vicente, J. Garcia-Mas, P. Puigdomenech, F. J. Vargas and P. Arus, “A Linkage Map with RFLP and Isozyme Markers for Almond,” Theoretical and Applied Genetics, Vol. 91, No. 6-7, 1995, pp. 964-971. doi:10.1007/BF00223907
[29] P. Resta, M. G. Corona, G. Fanizza, M. Palasciano and A. Godini, “Random Amplified DNA Polymorphisms in Amygdaluscommunis L., A. Webbii Spach,” Acta Horticulturae, Vol. 470, 1997, pp. 82-90.
[30] T. Joobeur, M. A. Viruel, M. C. de Vicente, B. Jauregui, J. Bellester, M. T. Dettori, I. Verde, M. J. Truco, R. Messeguer, J. Balester, R. Quarta, E. Dirlewanger and P. Arús, “Construction of a Saturated Linkage Map for Prunus Using an Almond × Peach F2 Progeny,” Theoretical and Applied Genetics, Vol. 97, No. 7, 1998, pp. 1034-1041. doi:10.1007/s001220050988
[31] F. Bartolozzi, M. L. Warburton, S. Arulsekar and T. M. Gradziel, “Genetic Characterization and Relatedness among California Almond Cultivars and Breeding Lines Detected by Randomly Amplified Polymorphic DNA (RAPD) Analysis,” Journal of the American Society for Horticultural Science, Vol. 123, 1998, pp. 381-387.
[32] M. Martins, A. Farinha, E. Ferreira, V. Cordeiro, A. Monteiro, R. Tenreiro and M. M. Oliveira, “Molecular Analysis of the Genetic Variability of Portuguese Almond Collections,” Acta Horticulturae, Vol. 546, 2001, pp. 449-452.
[33] M. Martins, R. Tenreiro and M. M. Oliveira, “Genetic Relatedness of Portuguese Almond Cultivars Assessed by RAPD and ISSR Markers,” Plant Cell Reports, Vol. 22, No. 1, 2003, pp. 71-78. doi:10.1007/s00299-003-0659-9
[34] F. J. Ryan, C. A. Ledbetter, D. W. Ramming, D. Palmquist, D. E. Bell and S. J. Peterson, “Challenges in Developing Molecular Markers for Almond (Prunus) and Grape (Vitis Species),”Acta Horticulturae, Vol. 546, 2001, pp. 629-639.
[35] P. Martínez-Gómez, S. Arulsekar, D. Potter and T. M. Gradziel, “Relationships Among Peach, Almond and Related Species as Detected by Simple Sequence Repeat Markers,” Journal of the American Society for Horticultural Science, Vol. 128, 2003, pp. 667-671.
[36] B. Khadari, J. Charafi, A. Moukhli and M. Ater, “Substantial Genetic Diversity in Cultivated Moroccan Olive Despite a Single Major Cultivar: A Paradoxical Situation Evidenced by the Use of SSR Loci,” Tree Genetics & Genomes, Vol. 4, No. 2, 2007, pp. 213-221. doi:10.1007/s11295-007-0102-4
[37] B. Shiran, N. Amirbakhtiar, S. Kiani, Sh. Mohammadi, B. E. Sayed-Tabatabaei and H. Moradi, “Molecular Characterization and Genetic Relationship among Almond Cultivars Assessed by RAPD and SSR Markers,” Scientia Horticulturae, Vol. 111, No. 3, 2007, pp. 280-292. doi:10.1016/j.scienta.2006.10.024
[38] A. Fathi, B. Ghareyazi, A. Haghnazari, M. R. Ghaffari, S. M. Pirseyedi, S. Kadkhodaei, M. R. Naghavi and M. Mardi, “Assessment of the Genetic Diversity of Almond (Prunus dulcis) Using Microsatellite Markers and Morphological Traits,” Iranian Journal of Biotechnology, Vol. 6, No. 2, 2008, pp. 98-106.
[39] H. Achtak, A. Oukabli, M. Ater, S. Santoni, F. Kjellberg and B. Khadari, “Microsatellite Markers as Reliable Tools for Fig Cultivar Identification,” Journal of the American Society for Horticultural Science, Vol. 134, 2009, pp. 624-631.
[40] H. Achtak, M. Ater, A. Oukabli, S. Santoni, F. Kjellberg and B. Khadar, “Traditional Agroecosystems as Conservatories and Incubators of Cultivated Plant Varietal Diversity: The Case of Fig (Ficuscarica L.) in Morocco,” BMC Plant Biology, Vol. 10, 2010, pp. 1471-2229. doi:10.1186/1471-2229-10-28
[41] P. Martínez-Gómez, R. Sánchez-Pérez, F. Dicenta, W. Howad, P. Arus and T. M. Gradziel, “Almonds,” In: C. R. Kole, Ed., GenomeMapping and Molecular Breeding, Fruits & Nuts, Springer, Heidelberg, Berlin, New York, Tokyo, Vol. 4, 2007, pp. 229-242.
[42] P. K. Gupta, H. S. Balyan, P. C. Sharma and B. Ramesh, “Microsatellites in Plants: A New Class of Molecular Markers,” Current Science, Vol. 70, 1996, pp. 45-54.
[43] J. J. Doyle and J. L. Doyle, “A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue,” Phytochemical Bulletin, Vol. 19, 1987, pp. 11-15.
[44] G. Cipriani, G. Lot, H. G. Huang, M. T. Marrazzo, E. Peterlunger and R. Testolin, “AC/GT and AG/CT Microsatellite Repeats in Peach (Prunuspersica (L) Basch): Isolation, Characterization and Cross-Species Amplification in Prunus,” Theoretical and Applied Genetics, Vol. 99, No. 1-2, 1999, pp. 65-72. doi:10.1007/s001220051209
[45] B. Sosinski, M. Gannavarapu, L. D. Hager, L. E. Beck, G. J. King, C. D. Ryder, S. Rajapakse, W. V. Baird, R. E. Ballard and A. G. Abbott, “Characterisation of Microsatellite Markers in Peach [Prunuspersica (L.) Batsch],” Theoretical and Applied Genetics, Vol. 101, No. 3, 2000, pp. 421-428. doi:10.1007/s001220051499
[46] R. Testolin, T. Marrazo, G. Cipriani, R. Quarta, I. Verde, T. Dettori, M. Pancaldi and S. Sansavini, “Microsatellite DNA in Peach (Prunuspersica L. Batsch), It Use in Fingerprinting and Testing the Genetic Origin of Cultivars,” Genome, Vol. 43, 2000, pp. 512-520.
[47] M. J. Aranzana, J. García-Mas, J. Carbóand P. Arús, “Development and Variability Analysis of Microsatellite Markers in Peach,” Plant Breeding, Vol. 121, No. 1, 2002, pp. 87-92. doi:10.1046/j.1439-0523.2002.00656.x
[48] E. Dirlewanger, A. Crosson, P. Tavaud, M.J. Aranzana, C. Poizat, A. Zanetto, P. Arus and L. Laigret, “Development of Microsatellite Markers in Peach and Their Use in Genetic Diversity Analysis in Peach and Sweet Cherry,” Theoretical and Applied Genetics, Vol. 105, No. 1, 2002, pp. 127-138. doi:10.1007/s00122-002-0867-7
[49] K. Belkhir, P. Borsa, L. Chikhi, N. Raufaste and F. Bonhomme, “GENETIX 4.03, Logiciel sous Windows TM pour la Génétique des Populations,” Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier (France), 2004.
[50] D. Botstein, R.L. White, M. Skolnick and R.W. Davis, “Construction of Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms,” The American Journal of Human Genetics, Vol. 32, 1980, pp. 314-331.
[51] J. A. Anderson, G. A. Churchill, J. E. Sutrique, S. D. Tanksley and M. E. Sorrels, “Optimizing Parental Election for Genetic Linkage Maps,” Genome, Vol. 36, No. 1, 1993, pp. 181-186. doi:10.1139/g93-024
[52] A. D. Kloosterman, B. Budowle and M. Daselaar, “PCR-Amplification and Detection of the Human DIS80 VNTR Locus. Amplification Conditions, Population Genetics and Application in Forensic Analysis,” International Journal of Legal Medicine, Vol. 105, No. 5, 1993, pp. 257-264. doi:10.1007/BF01370382
[53] D. Paetkau, W. Calvert, I. Stirling and C. Strobeck, “Microsatellite Analysis of Population Structure in Canadian Polar Bears,” Molecular Ecology, Vol. 4, No. 3, 1995, pp. 347-354. doi:10.1111/j.1365-294X.1995.tb00227.x
[54] H. W. Wagner and K. M. Sefc, “IDENTITY 4.0. Centre for Applied Genetics,” University of Agricultural Sciences, Vienna, 1999.
[55] B. S. Weir and C. C. Cockerham, “Estimating F-Statistics for the Analysis of Population Structure,” Evolution, Vol. 38, No. 6, 1984, pp. 1358-1370. doi:10.2307/2408641
[56] F. Rousset, “Genepop’007: A Complete Reimplementation of the Genepop Software for Windows and Linux,” Molecular Ecology Resources, Vol. 8, No. 1, 2008, pp. 103-106. doi:10.1111/j.1471-8286.2007.01931.x
[57] M. Nei and W. H. Li, “Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases,” Proceedings of the National Academy of Sciences, USA, Vol. 76, 1979, pp. 5269-5273. doi:10.1073/pnas.76.10.5269
[58] F. J. Rohlf, “NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.02i,” Exeter Software, New York, 1998.
[59] H. Xie, Y. Sui, F. Chang, Y. Xu and R. Ma, “SSR Allelic Variation in Almond (Prunus dulcis Mill.),” Theoretical and Applied Genetics, Vol. 112, No. 2, 2006, pp. 366-372. doi:10.1007/s00122-005-0138-5
[60] S. Kadkhodaei, M. Shahnazari, M. Khayyam Nekouei, M. Ghasemi, H. Etminani, A. Imani and A. B. Ariff, “A Comparative Study of Morphological and Molecular Diversity Analysis among Cultivated Almonds (Prunus dulcis),”Australian Journal of Crop Science, Vol. 5, No. 1, 2011, pp. 82-91.
[61] H. Gouta, E. Ksia, T. Buhner, M. A. Moreno, M. Zarrouk, A. Mliki and Y. Gogorcena, “Assessment of Genetic Diversity and Relatedness among Tunisian Almond Germplasm Using SSR Markers,” Hereditas, Vol. 147, No. 6, 2010, pp. 283-292. doi:10.1111/j.1601-5223.2009.02147.x
[62] A. FernándeziMartí, J. M. Alonso, M. J. Espiau, Rubio-Cabetas and R. Sociasi Company, “Genetic Diversity in Spanish and Foreign Almond Germplasm Assessed by Molecular Characterization with Simple Sequence Repeats,” Journal of the American Society for Horticultural Science, Vol. 134, No. 5, 2009, pp. 535-542.
[63] N. MirAli and I. Nabulsi, “Genetic Diversity of Almonds (Prunus dulcis) Using RAPD Technique,” Scientia Horticulturae, Vol. 98, 2003, pp. 461-471.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.