Transferability of Sorghum Genic Microsatellite Markers to Peanut

Abstract

Currently development of new marker types has shifted from anonymous DNA fragments to gene-based markers. Simple Sequence Repeats (SSRs) are useful DNA markers in plant genetic research including in peanut. However, de novo development of SSRs is expensive and time consuming. Gene-based DNA markers are transferable among related species owing to the conserved nature of genes. In this study transferability of sorghum EST-SSR (SbEST-SSR) markers to peanut was prospected. A set of 411 SbEST-SSR primer pairs were used to amplify peanut genomic DNA extracted from cultivated peanut where 39% of them successfully amplified. A comparison of amplification patterns between sorghum and peanut showed similar banding pattern with majority of transferable SbEST-SSRs. Among these transferable SSR markers, 14% have detected polymorphism among 4 resistant and 4 susceptible peanut lines for rust and late leaf spot diseases. These transferable markers will benefit peanut genome research by not only providing additional DNA markers for population genetic analyses, but also allowing comparative mapping to be possible between peanut and sorghum—a possible monocot-dicot comparison.

Share and Cite:

S. Savadi, B. Fakrudin, H. Nadaf and M. Gowda, "Transferability of Sorghum Genic Microsatellite Markers to Peanut," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1169-1180. doi: 10.4236/ajps.2012.39142.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Halward, H. T. Stalker and G. Kochert, “Development of an RFLP Linkage Map in Peanut Species,” Theoretical and Applied Genetics, Vol. 87, No. 3, 1993, pp. 379-384. doi:10.1007/BF01184927
[2] M. D. Burrow, C. E. Simpson, A. H. Paterson and J. L. Starr, “Identification of Peanut (Arachis hypogaea L.) RAPD Markers Diagnostic of Root-Knot Nematode (Meloidigyne arenaria (Neal) Chitwood) Resistance,” Molecular Breeding, Vol. 2, No. 4, 1996, pp. 368-379. doi:10.1007/BF00437915
[3] G. Lacks and H. Stalker, “Isozyme Analyses of Arachis Species and Interspecific Hybrids,” Peanut Science, Vol. 20, No. 2, 1993, pp. 76-81. doi:10.3146/i0095-3679-20-2-3
[4] A. K. Singh, J. Smartt, C. E. Simpson and S. N. Raina, “DNA Markers in Cultivated Peanut (Arachis hypogaea L.),” BMC Plant Biology, Vol. 3, 1998, pp. 3-10.
[5] L. Zane, L. Bargelloni and T. Patarnello, “Strategies for Microsatellite Isolation: A Review,” Molecular Ecology, Vol. 11, No. 1, 2002, pp. 1-16. doi:10.1046/j.0962-1083.2001.01418.x
[6] M. A. Gimenes, A. A. Hoshino, A. V. G. Barbosa, D. A. Palmieri and C. R. Lope, “Characterization and Transferability of Microsatellite Markers of the Cultivated Peanut (A. hypogaea),” BMC Plant Biology, Vol. 7, 2007, p. 9. http://www.biomedcentral.com/bmcplantbiol. doi:10.1186/1471-2229-7-9
[7] G. He and C. Prakash, “Evaluation of Genetic Relationship among Botanical Varieties of Cultivated Peanut (Arachis hypogaea L.) Using AFLP Markers,” Genetic Resources and Crop Evolution, Vol. 48, No. 4, 2001, pp. 347-352. doi:10.1023/A:1012019600318
[8] S. L. Dwivedi, S. Gurtu, S. Chandra, W. Yuejin and S. N. Nigam, “Assessment of Genetic Diversity among Selected Groundnut Germplasm. I: RAPD Analysis,” Plant Breeding, Vol. 120, No. 4, 2001, pp. 345-349. doi:10.1046/j.1439-0523.2001.00613.x
[9] V. Subramanian, S. Gurtu, R. C. Nageswara Rao and S. N. Nigam, “Identification of DNA Polymorphism in Cultivated Groundnut Using Random Amplified Polymorphic DNA (RAPD) Assay,” Genome, Vol. 43, No. 4, 2000, pp. 656-660. doi:10.1139/g00-034
[10] J. Squirrell, P. M. Hollingsworth, M. Woodhead, J. Russell, A. J. Lowe and M. Gibby, “How Much Effort Is Required to Isolate Nuclear Microsatellites from Plants?” Molecular Ecology, Vol. 12, 2003, pp. 1339-1348. doi:10.1046/j.1365-294X.2003.01825.x
[11] J. R. Ellies and J. M. Burke, “EST-SSRs as a Resource for Population Genetic Analyses,” Heredity, Vol. 99, No. 2, 2007, pp. 125-132. doi:10.1038/sj.hdy.6801001
[12] L. Gao, J. Tang, H. Li and J. Jia, “Analysis of Microsatellites in Major Crops Assessed by Computational and Experimental Approaches,” Molecular Breeding, Vol. 12, No. 3, 2003, pp. 245-261.
[13] Jia and Bonierbale, “Validation of Conserved Orthologous Markers, A Proposal for Extension of Commissioned Research in Subprogram 2 ‘Comparative Genomics’ Cluster 2: Marker Development Generation Challenge Program,” 2005.
[14] N. L. Raju, B. N. Gnanesh and R. Varshney, “The First Set of EST Resource for Gene Discovery and Marker Development in Pigeonpea (Cajanus cajan L.),” BMC Plant Biology, Vol. 10, 2010, pp. 45-67. doi:10.1186/1471-2229-10-45
[15] G. M. Cordeiro, R. Casu, C. L. Mcintyre, J. M. Manners and R. J. Henry, “Microsatellite Markers from Sugarcane (Saccharum spp.) ESTs cross Transferable to Erianthus and Sorghum,” Plant Science, Vol. 160, No. 6, 2001, pp. 1115-1123. doi:10.1016/S0168-9452(01)00365-X
[16] S. Temnykh, G. Declerck, A. Lukashova, L. Lipovich, S. Cartinhour and S. Mccouch, “Computational and Experimental Analysis of Microsatellites in rice (O. sativa L.): Frequency, Length Variation, Transposon Associations, and Genetic Marker Potential,” Genome Research, Vol. 11, No. 8, 2001, pp. 1441-1452. doi:10.1101/gr.184001
[17] I. Eujayl, M. E. Sorrells, P. Wolters, M. Baum and W. Powell, “Isolation of EST-Derived Microsatellite Markers for Genotyping the A and B Genomes of Wheat,” Theoretical and Applied Genetics, Vol. 104, No. 2-3, 2002, pp. 399-407. doi:10.1007/s001220100738
[18] B. Hackauf and P. Wehling, “Identification of Microsatellite Polymorphisms in an Expressed Portion of the Rye Genome,” Plant Breeding, Vol. 121, No. 1, 2002, pp. 17-25. doi:10.1046/j.1439-0523.2002.00649.x
[19] T. Thiel, W. Michalek, K. Varsheny and A. Graner, “Exploiting EST Databases for the Development of cDNA Derived Microsatellite Markers in Barley (Hordeum vulgare L.),” Theoretical and Applied Genetics, Vol. 106, No. 3, 2003, pp. 411-422.
[20] M. J. Faville, A. C. Vecchies, M. Schreiber, M. C. Drayton, L. J. Hughes, E. S. Jones, K. M. Guthridge, K. F. Smith, T. Sawbridge, G. C. Spangenberg, G. T. Bryan and J. W. Forster, “Functionally Associated Molecular Genetic Marker Map Construction in Perennial Ryegrass (Lolium perenne L.),” Theoretical and Applied Genetics, Vol. 110, No. 1, 2004, pp. 12-32. doi:10.1007/s00122-004-1785-7
[21] J. H. Peng and N. L. Lapitan, “Characterization of EST-Derived Microsatellites in the Wheat Genome and Development of eSSR Markers,” Functional & Integrative Genomics, Vol. 5, No. 2, 2005, pp. 80-96. doi:10.1007/s10142-004-0128-8
[22] G. Q. Song, M. J. Li, H. Xiao, X. J. Wang, R. H. Tang, H. Xia, et al., “EST Sequencing and SSR Marker Development from Cultivated Peanut (Arachis hypogaea L.),” Electronic Journal of Biotechnology, Vol. 13, No. 3, 2010. doi:10.2225/vol13
[23] Z. Han, C. Wang, X. Song, W. Guo, J. Gou, C. Li, X. Chen and T. Zhang, “Characteristics, Development and Mapping of Gossypium hirsutum Derived EST-SSRs in Allotetraploid Cotton,” Theoretical and Applied Genetics, Vol. 112, No. 3, 2006, pp. 430-439. doi:10.1007/s00122-005-0142-9
[24] R. K. Varshney, R. Sigmund, A. Borner, V. Korzun, N. Stein and M. E. Sorrells, “Interspecific Transferability and Comparative Mapping of Barley EST-SSR Markers in Wheat, Rye and Rice,” Plant Science, Vol. 168, No. 1, 2005, pp. 195-202. doi:10.1016/j.plantsci.2004.08.001
[25] J. R. Andersen and T. Lubberstedt, “Functional Markers in Plants,” Trends in Plant Science, Vol. 8, No. 11, 2003, pp. 554-560. doi:10.1016/j.tplants.2003.09.010
[26] C. A. Fatokun, D. I. Menacio-Hautea, D. Danesh and N. D. Young, “Evidence for Orthologous Seed Weight Genes in Cowpea and Mung Bean Based upon RFLP Mapping,” Genetics, Vol. 132, 1992, pp. 841-846.
[27] J. L. Bennetzen and M. Freeling, “Grasses as a Single Genetic System: Genome Composition, Colinearity and Compatibility,” Trends in Genetics, Vol. 9, No. 8, 1993, pp. 259-261. doi:10.1016/0168-9525(93)90001-X
[28] M. D. Gale and K. M. Devos, “Comparative Genetics in the Grasses,” Proceedings of the National Academy of Sciences USA, Vol. 95, 1998, pp. 1971-1974.
[29] V. Decroocq, M. G. Fave, L. Hagen, L. Bordenave and S. Decroocq, “Development and Transferability of Apricot and Grape EST Microsatellite Markers across Taxa,” Theoretical and Applied Genetics, Vol. 106, No. 5, 2003, pp. 912-922.
[30] M. Woodhead, J. Russell, J. Squirrell, P. M. Hollings-worth, L. Cardle, L. Ramsay, M. Gibby and W. Powell, “Development of EST-SSRs from the Alpine Lady-Fern, Athyrium Distentifolium,” Molecular Ecology Notes, Vol. 3, No. 2, 2003, pp. 287-290. doi:10.1046/j.1471-8286.2003.00427.x
[31] M. V. Gutierrez, M. C. Vaz Patto and T. Huguet, “Cross-Species Amplification of Medicago Truncatula Microsatellites across Three Major Pulse Crops,” Theoretical and Applied Genetics, Vol. 110, No. 7, 2005, pp. 1210-1217. doi:10.1007/s00122-005-1951-6
[32] X. Jia, Y. Shi, Y. Song, G. Wang, T. Wang and Y. Li, “Development of EST-SSR in Foxtail Millet (Setaria italica),” Genetic Resources and Crop Evolution, Vol. 54, No. 2, 2007, pp. 233-236. doi:10.1007/s10722-006-9139-8
[33] X. Liang, X. Chen, Y. Hong, H. Liu, G. Zhou, S. Li and B. Guo, “Utility of EST-Derived SSR in Cultivated Peanut (Arachis hypogaea L.) and Arachis Wild Species,” BMC Plant Biology, Vol. 9, 2009, p. 35. doi:10.1186/1471-2229-9-35
[34] B. Gautami, K. Ravi, M. L. Narasu, D. A. Hoisington and R. K. Varshney, “Novel Set of Peanut SSR Markers for Germplasm Analysis and Interspecific Transferability,” International Journal of Integrative Biology, Vol. 7, No. 2, 2009, pp. 100-106.
[35] R. K. Varshney, A. Graner and M. E. Sorrells, “Genic Microsatellite Markers in Plants: Features and Applications,” Trends in Biotechnology, Vol. 23, No. 1, 2005, pp. 48-54. doi:10.1016/j.tibtech.2004.11.005
[36] M. Luo, P. Dang, B. Z. Guo, G. He, C. C. Holbrook, M. G. Bausher and R. D. Lee, “Generation of Expressed Sequence Tags (ESTs) for Gene Discovery and Marker Development in Cultivated Peanut,” Crop Science, Vol. 45, No. 1, 2005, pp. 346-353. doi:10.2135/cropsci2005.0346
[37] M. Luo, P. Dang, M. G. Bausher, C. C. Holbrook, R. D. Lee, R. E. Lynch and B. Z. Guo, “Identification of Transcripts Involved in Resistance Response to Leaf Spot Disease Caused by Cercosporidium personatum in peanut (Arachis hypogaea),” Phytopathology, Vol. 95, No. 4, 2005, pp. 381-387. doi:10.1094/PHYTO-95-0381
[38] G. He, R. H. Meng, H. Gao, B. Guo, G. Gao, M. Newman, R. N. Pittman and C. S. Prakash, “Simple Sequence Repeat Markers for Botanical Varieties of Cultivated Peanut (Arachis hypogaea L.),” Euphytical, Vol. 142, No. 1, 2005, pp. 131-136. doi:10.1007/s10681-005-1043-3
[39] G. H. He, R. H. Meng, M. Newman, G. Q. Gao, R. N. Pittman and C. S. Prakash, “Microsatellites as DNA Markers in Cultivated Peanut (Arachis hypogaea L.),” BMC Plant Biology, Vol. 3, 2003, p. 3. doi:10.1186/1471-2229-3-3
[40] M. L. Wang, N. L. Barkley, R. Dean, C. Holbrook and R. N. Pittman, “Transfer of Medicago EST-SSRs to Peanut for Germplasm Evaluation and Cross-Species Cloning,” Annual American Peanut Research & Education Society Proceedings, Vol. 7, 2004, pp. 6-12.
[41] J. E. Mullet, R. R. Klein and P. E. Klein, “Sorghum bicolor—An Important Species for Comparative Grass Genomics and a Source of Beneficial Genes for Agriculture,” Current Opinion in Plant Biology, Vol. 5, No. 2, 2002, pp. 118-121. doi:10.1016/S1369-5266(02)00232-7
[42] A. H. Paterson, et al., “The Sorghum bicolor Genome and the Diversification of Grasses,” Nature, Vol. 457, No. 7229, 2009, pp. 551-556. doi:10.1038/nature07723
[43] M. G. Murray and W. F. Thompson, “Rapid Isolation of High Molecular Weight Plant DNA,” Nucleic Acids Research, Vol. 8, 1980, pp. 4321-4325. doi:10.1093/nar/8.19.4321
[44] R. H. Don, P. T. Cox, B. J. Wainwright, K. Baker and J. S. Mattick, “Touchdown PCR to Circumvent Spurious Priming during Gene Amplification,” Nucleic Acids Research, Vol. 19, 1991, p. 4008. doi:10.1093/nar/19.14.4008
[45] S. C. Gonza′lez-Marti′nez, N. C. Wheeler Elhan Ersoz, D. C. Nelson and D. B. Neal, “Association Genetics in Pinus taeda L. I. Wood Property Traits,” Genetics, Vol. 175, 2007, pp. 399-409.
[46] W. L. Crepet and G. D. Feldman, “The Earliest Remains of Grasses in the Fossil Record,” American Journal of Botany, Vol. 78, No. 7, 1991, pp. 1010-1014. doi:10.2307/2445181
[47] G. H. He, F. E. Woullard, I. Marong and B. Z. Guo, “Transferability of Soybean SSR Markers in Peanut (Arachis hypogaea L.),” Peanut Science, Vol. 33, No. 1, 2006, pp. 22-28. doi:10.3146/0095-3679(2006)33[22:TOSSMI]2.0.CO;2
[48] J. K. Yu, A. E. Strand and B. G. Milligan, “EST-Derived SSR Markers for Comparative Mapping in Wheat and Rice,” Molecular Genetics and Genomics, Vol. 271, No. 6, 2004, pp. 742-751. doi:10.1007/s00438-004-1027-3

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.