Environmentally Benign Electrophilic Halogenation of Naphthalenes by H2O2—Alkali Metal Halides in An Aqueous Cationic Micellar Media

Abstract

An efficient and greener protocol for the synthesis of 1-halo-naphthols by the action of hydrogen peroxide and alkali metal halides in aqueous micellar media is been described in the present work. This is an environmentally clean and safe procedure, which involved insitu generation of the active halogen in presence of alkali halides. Cationic surfactants such as cetyltrimethylammoniumbromide (CTAB) and cetyltrimethylammoniumchloride (CTAC) were found to facilitate efficiency of halogenation in aqueous media.

Share and Cite:

K. Reddy, S. Sana, K. Uppalaiah, K. Rajanna and P. Veerasomaiah, "Environmentally Benign Electrophilic Halogenation of Naphthalenes by H2O2—Alkali Metal Halides in An Aqueous Cationic Micellar Media," International Journal of Organic Chemistry, Vol. 2 No. 3, 2012, pp. 254-261. doi: 10.4236/ijoc.2012.23034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Carlos Kleber Z. Andrade and Luana M. Alves. “Environmentally Benign Solvents in Organic Synthesis: Current Topics,” Current Organic Chemistry, Vol. 9, No. 2, 2005, pp. 195-218. doi.org/10.2174/1385272053369178
[2] A. Chanda and V. V. Fokin, “Organic Synthesis ‘on Wa- ter’,” Chemical Reviews, Vol. 109, No. 2, 2009, pp. 725- 748. doi:10.1021/cr800448q
[3] M. Raj and V. K. Singh, “Organocatalytic Reactions in Water,” Chemical Communications, No. 44, 2009, pp. 6687-6703. doi:10.1039/b910861k
[4] S. Liu and J. Xiao, “Toward Green Catalytic Synthesis- Transition Metal-Catalyzed Reactions in Non-Conventional Media,” Journal of Molecular Catalysis A: Chemical, Vol. 270, No. 1, 2007, pp. 1-43.
[5] C. J. Li, “Quasi-Nature Catalysis: Developing C-C Bond Formations Catalyzed by Late Transition Metals in Air and Water,” Accounts of Chemical Research, Vol. 35, No. 7, 2002, pp. 533-538. doi:10.1021/ar0100125
[6] T. Huang and C.-J. Li, “Palla-dium-Catalyzed Coupling of Aryl Halides with Arylhalosilanes in Air and Water,” Tet- rahedron Letters, Vol. 43, No. 3, 2002, pp. 403-405. doi:10.1016/S0040-4039(01)02193-1
[7] D. Dallinger and C. O. Kappe, “Microwave-Assisted Synthesis in Water as Solvent,” Chemical Reviews, Vol. 107, No. 6, 2007, pp. 2563-2591. doi:10.1021/cr0509410
[8] C. J. Li and L. Chen, “Organic Chemistry in Water,” Chemical Society Reviews, Vol. 35, No. 1, 2006, pp. 68- 82. doi:10.1039/b507207g
[9] R. A. Sheldon, “Green Solvents for Sustainable Organic Synthesis: State of the Art,” Green Chemistry, Vol. 7, No. 5, 2005, pp. 267-278. doi:10.1039/b418069k.
[10] U. M. Lindstrom, “Stereoselective Organic Reactions in Water,” Chemical Reviews, Vol. 102, No. 8, 2002, pp. 2751-2772. doi:10.1021/cr010122p.
[11] A. Modak, J. Mondal, M. Sasidharan and A. Bhaumik, “Triazine Functionalized Ordered Mesoporous Polymer: A Novel Solid Support for Pd-Mediated C-C Cross-Coupling Reactions in Water,” Green Chemistry, Vol. 13, No. 5, 2011, pp. 1317-1331. doi:10.1039/c1gc15045f
[12] A. N. arziale, D. Jantke, S. H. Faul, T. Reiner, E. Herdtweck and J. Eppinger, “An Efficient Protocol for the Palladium-Catalysed Suzuki-Miyaura Cross-Coupling,” Green Chemistry, Vol. 13, No. 1, 2011, pp. 169-177. doi:10.1039/c0gc00522c
[13] M. Carril, R. SanMartin and E. Domínguez, “Palladium and Copper-Catalysed Arylation Reactions in the Presence of Water, with a Focus on Carbon-Heteroatom Bond Formation,” Chemical Society Reviews, Vol. 37, No. 4, 2008, pp. 639-647. doi:10.1039/b709565c
[14] C. I. Herrerías, X. Yao, Z. Li and C. J. Li, “Reactions of C-H Bonds in Water,” Chemical Reviews, Vol. 107, No. 6, 2007, pp. 2546-2562. doi:10.1021/cr050980b
[15] N. Liu, C. Liu and Z. L. Jin, “Poly(ethyleneglycol)-Functionalized Imida Zoliumsalts-Palladium-Catalyzed Suzuki Reaction in Water,” Green Chemistry, Vol. 14, No. 3, 2012, pp. 592-597. doi:10.1039/c2gc16486h
[16] M. Shiri and M. A.Zolfigol, “Surfactant-Type Catalysts in Organic Reactions,” Tetrahedron, Vol. 65, No. 3, 2009, pp. 587-598. doi:10.1016/j.tet.2008.09.085.
[17] B. M. Trost, “The Atom Economy—A Search for Synthetic Efficiency,” Science, Vol. 254, No. 5037, 1991, pp. 1471-1477. doi:10.1126/science.1962206.
[18] P. A. Wender and B. L. Miller, “Synthesis at the Molecular Frontier,” Nature, Vol. 460, No. 7252, 2009, pp. 197- 201. doi:10.1038/460197a
[19] I. S. Young and P. S. Baran, “Protecting-Group-Free Synthesis as an Opportunity for Invention,” Nature Chemistry, Vol. 1, No. 3, 2009, pp. 193-205. doi:10.1038/nchem.216.
[20] T. Gaich and P. S. Baran, “Aiming for the Ideal Synthe- sis,” Journal of Organic Chemistry, Vol. 75, No. 14, 2010, pp. 4657-4673. doi:10.1021/jo1006812.
[21] D. Noutsias, I. Alexopoulou, T. Montagnon and G. Assilikogiannakis, “Using Water, Light, Air and Spirulina to Access a Wide Variety of Polyoxygenated Compounds,” Green Chemistry, Vol. 14, No. 3, 2012, pp. 601-604. doi:10.1039/c2gc16397g
[22] J. H. Fendler and E. J. Fendler, “Catalysis in Micellar and Macromolecular Systems,” Academic Press, New York, 1975.
[23] F. M. Menger, “The Structure of Micelles,” Accounts of Chemical Research, Vol. 12, No. 4, 1979, pp. 111-117. doi:10.1021/ar50136a001
[24] P. Tundo, A. Perosa and F. Zecchini, “Methods and Reagents for Green Chemistry: An Introduction,” John- Wiley and Sons Inc., New Jersey, 2007. doi:10.1002/9780470124086
[25] B. J. Wakefield, “The Chemistry of Organolithium Compounds,” Pergamon Press, Oxford, 1976.
[26] S. G. Davis, “Organo Transition Metal Chemistry: Applications to Organic Synthesis,” Pergamon Press, Oxford, 1982.
[27] K. C. Cannon and G. R. Krow, “Handbook of Grignard Reagents,” CRC, New York, 1996.
[28] N. Miyaura and A. Suzuki, “Palladium-Catalyzed Cross- Coupling Reactions of Organoboron Compounds,” Chemical Reviews, Vol. 95, No. 7, 1995, pp. 2457-2483. doi:10.1021/cr00039a007
[29] I. P. Beletskaya and A. V. Cheprakov, “The Heck Reaction as a Sharpening Stone of Palladium Catalysis,” Chemical Reviews, Vol. 100, No. 8, 2000, pp. 3009-3066. doi:10.1021/cr9903048
[30] W. Cabri and I. Candiani, “Recent Developments and New Perspectives in the Heck Reaction,” Accounts of Chemical Research, Vol. 28, No. 1, 1995, pp. 2-7. doi:10.1021/ar00049a001
[31] A. Meijere and F. E. Meyer, “Fine Feathers Make Fine Birds: The Heck Reaction in Modern Garb,” Angewandte Chemie International Edition in English, Vol. 33, No. 23- 24, 2003, pp. 2379. doi:10.1002/anie.199423791.
[32] K. Sonogashira, “Compre-hensive Organic Synthesis,” Pergamon Press, New York, 1991.
[33] M. B. Smith and J. March, “March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure,” 6th Editionm Wiley, New York, 2007.
[34] R. C. Larock, “Comprehensive Organic Transformations,” 2nd Edition, Wiley-VCH, New York, 1999.
[35] B. Das, K. Venkateswarlu, M. Krishnaiah and H. Holla, “An Efficient, Rapid and Regioselective Nuclear Bromi-nation of Aromatics and Heteroaromatics with NBS Using Sul-fonic-Acid-Functionalized Silica as a Heteroge- neous Recyclable Catalyst,” Tetrahedron Letters, Vol. 47, No. 49, 2006, pp. 8693. doi:10.1016/j.tetlet.2006.10.029
[36] R. Baharfar, H. Alinezhad, S. Azimi and S. Salehian, “Regioselective and High-Yielding Bromination of Phenols and Anilinsusing N-Bromosaccharin and Amber- lyst-15,” Journal of the Chilean Chemical Society, Vol. 56, No. 4, 2011, pp. 863-865.
[37] B. Das, K. Venkateswarlu, A. Majhi, V. Siddaiah and K. R Reddy, “A Facile Nuclear Bromination of Phenols and Anilines Using NBS in the Presence of Ammonium Ace- tate as a Catalys,” Journal of Molecular Catalysis A: Chemical, Vol. 267, No. 1-2, 2007, pp. 30-33; doi:10.1016/j.molcata.2006.11.002
[38] D. Kalyani, A. R. Dick, W. Q. Anani and M. S. Sanford, “A Simple Catalytic Method for the Regioselective Halo-genation of Arenes,” Organic Letters, Vol. 8, No. 12, 2006, pp. 2523-2526. doi:10.1021/ol060747f
[39] D. Kalyani, A. R. Dick, Anani and W. Q. M. S. Sanford, “Scope and Selectivity in Palladi-um-Catalyzed Directed C-H Bond Halogenation Reactions,” Tetrahedron, Vol. 62, No. 49, 2006, pp. 11483-11498. doi:10.1016/j.tet.2006.06.075
[40] D. Pla, F. Albericio and M. Alvarez, “Regioselective Monobromination of Free and Pro-tected Phenols,” European Journal of Organic Chemistry, Vol. 2007, No. 12, 2007, pp. 1921-1924. doi:10.1002/ejoc.200600971.
[41] H. Adibi, A. R, Hajipour and M. Hashemi, “Application of 4,5-O,N-Oxazolidinone Protected Thiophenyl Sialosyl Donor to the Synthesis of α-Sialosides,” Tetrahedron Letters, Vol. 48, No. 7, 2007, pp. 1255-1227. doi:10.1016/j.tetlet.2006.12.061.
[42] H. Tajik, I. Mohammadpoor-Baltork and J. Albadi, “Bro-mination of Some Aromatic Compounds with Potassium Bromide in the Presence of Benzyltriphenylphosphonium Peroxodisulfate,” Synthetic Communications, Vol. 37, No. 2, 2007, pp. 323-328. doi:10.1080/00397910601033906
[43] T. Stropnik, S. Bombek, M. Kocevar and S. Polanc, “Regioselective Bromination of Activated Aromatic Substrates with a ZrBr4/Diazene Mixture,” Tetrahedron Letters, Vol. 49, No. 11, 2008, pp. 1729-1733. doi:10.1016/j.tetlet.2008.01.072
[44] S. Singhal, S. L. Jain and B. J. Sain, “A Simple and Im- proved Regioselective Bromina-tion of aromatic compoundsusing N-methylpyrolidin-2-one Hydrotribromide and Aqueous Hydrogen Peroxide under Mild Reaction Conditions,” Journal of Molecular Catalysis A: Chemical, Vol. 258, No. 1-2, 2006, pp. 198-202. doi:10.1016/j.molcata.2006.05.042.
[45] K. Menzel, E. L. Fisher, L. DiMichele, D. E. Frantz, T. D. Nelson and M. H. Kress, “An Improved Method for the Bromination of Metalated Haloarenes via Lithium, Zinc Transmetalation: A Convenient Synthesis of 1,2-Dibro-moarenes,” Journal of Organic Chemistry, Vol. 71, No. 5, 2006, pp. 2188-2191. doi:10.1021/jo052515k
[46] S. Adimurthy, G. Ramachandraiah, A. V. Bedekar, S. Ghosh, B. C. Ranu and P. K. Ghosh, “Eco-Friendly and Versatile Brominating Reagent Prepared from a Liquid Bromine Precursor,” Green Chemistry, Vol. 8, No. 10, 2006, pp. 916-922. doi:10.1039/b606586d
[47] Z. G. Lee, Z. C. Chen and Q. G. Zheng, “[Bmim]Br3 as a New Reagent for Regioselective Mono-bromination of Activated Aromatics under Solvent-Free Conditions,” Chinese Chemical letters, Vol. 16, No. 8, 2005, pp. 1007-1009.
[48] Z.-G. Lee and Z.-C. Chen, Y. Hu, “[Bmim]Br3 as a New Reagent for Regioselective Mono-bromination of Acti- vated Aromatics under Solvent-Free Conditions,” Chinese Journal of Chemistry, Vol. 23, No. 11, 2005, pp. 1537-1540. doi:10.1002/cjoc.200591537
[49] M. M. Heravi, N. Abdolhosseini, H. A. Oskooie, “Re-gioselective and High-Yielding Bromination of Aromatic Compounds Using Hexamethylenetetramine-Bromine,” Te- trahedron Letters, Vol. 46, No. 51, 2005, pp. 8959-8963. doi:10.1016/j.tetlet.2005.10.041
[50] J. M. Gnaim and R. A. Sheldon, “Regioselective Bromination of Aromatic Compounds with Br2/SO2Cl2 over Microporous Catalysts,” Tetrahedron Letters, Vol. 46, No. 26, 2005, pp. 4465-4468.
[51] V. Kavala, S. Naik, B. K. Patel, “A New Recyclable Ditribromide Reagent for Efficient Bromination under Solvent Free Condition,” Journal of Organic Chemistry, Vol. 70, No. 11, 2005, pp. 4267-4271. doi:10.1021/jo050059u
[52] J.-M. Chretien, F. Zammattio, E. Le Grognec, M. Paris, B. Cahingt, G. Montavon and J.-P. Quintard, “Polymer-Supported Organotin Reagents for Regioselective Halogenation of Aromatic Amines,” Journal of Organic Chemistry, Vol. 70, No. 7, 2005, pp. 2870-2873. doi:10.1021/jo0480141
[53] T. Moriuchi, M. Yamaguchi, K. Kikushima and T. Hirao, “An Efficient Vanadium-Catalyzed Bromination Reaction,” Tetrahedron Letters, Vol. 48, No. 15, 2007, pp. 2667-2670. doi:10.1016/j.tetlet.2007.02.074
[54] N. B. Barhate, A. S. Gajare, R. D. Wakharkar and A. V. Bedekar, “Simple and Efficient Chlorination and Bro-minetion of Aro-matic Compounds with Aqueous TBHP (or H2O2) and a Hydrohalic Acid,” Tetrahedron Letters, Vol. 39, No. 35, 1998, pp. 6349-6350. doi:10.1016/S0040-4039(98)01305-7.
[55] F. L. Lambert, W. D. Ellis and R. J. Parry, “Halogenation of Aromatic Compounds by N-Bromo- and N-Chlorosuc- cinimide under Ionic Conditions,” Journal of Organic Chemistry, Vol. 30, No. 1, 1965, pp. 304-306. doi:10.1021/jo01012a512
[56] P. B DelaMare, “Electrophilic Halogenation,” Cambridge University Press, Cambridge, 1976.
[57] R. Wever and M. B. E. Kreenn, “Vanadium in Bio-logical Systems,” Kluwer Academic Publishers, Dordrecht, 1990. doi:10.1007/978-94-009-2023-1_5
[58] A. Butler and J. V. Walker, “Marine Haloperoxidases,” Chemical Reviews, Vol. 93, No. 5, 1993, pp. 1937-1944. doi:10.1021/cr00021a014
[59] T. J. Mason, “Chemistry with Ultrasound,” Elsevier Science Publishers Ltd., England, 1990.
[60] A. Kottror-earou and M. R. Hoffman, “Ultrasonic Irradiation of P-Nitrophenol in Aqueous Solution,” Journal of Physical Chemistry, Vol. 95, No. 9, 1991, pp. 3630- 3638. doi:10.1021/j100162a037
[61] K. S. Suslick, “Ultrasound, Its Chemical, Physical and Biological Effects,” VCH, New York, 1988.
[62] M. A. Margulis, “Advances in Sonochemistry,” In: T. J. Mason, Ed., Greenwich Connection, Elsevier, JA, London, 1990, p. 49.
[63] T. J. Mason, “Ultrasound in Synthetic Organic Chemis- try,” Chemical Society Reviews, Vol. 26, No. 6, 1997, pp. 443-451.
[64] G. R. Desiraju and B. S. Goud, “Reactivity of Solids: Present, Past and Future,” In: V. V. Boldyrev, Ed., Black- well Sciences, London, 1995, p. 223.
[65] R. Perrin, R. Lamartine, M. Perrin and A. Thozet, “Organic Solid State Chemistry,” In: G. R. Desiraju, Ed. Crystal Engineering: The Design of Organic Solids, Elsevier Scientific Publishers, Am-sterdam, 1987, p. 217.
[66] F. Toda, “Solid State Organic Chemistry: Efficient Reactions, Remarkable Yields, and Stereoselectivity,” Accounts of Chemical Research, Vol. 28, No. 12, 1995, pp. 480-486. doi:10.1021/ar00060a003
[67] K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Reviews, Vol. 100, No. 3, 2000, pp. 1025- 1074. doi:10.1021/cr940089p
[68] P. Lidstrom, J. Tierney, B. Wathey and J. Westman, “Microwave Assisted Organic Synthesis—A Review,” Tetrahedron, Vol. 57, No. 45, 2001, pp. 9225-9283.
[69] R. S. Varma, “Solvent-Free Organic Syntheses Using Supported Reagents and Microwave Irradiation,” Green Chemistry, Vol. 1, No. 1, 1999, pp. 43-55. doi:10.1039/a808223e

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.