Bacillus pumilus: Possible Model for the Bioweapon Bacillus anthracis


The misuse of Bacillus anthracis as a bioweapon continues to be a serious concern. Medical personnel and researchers are served well if appropriate non-pathogenic anthrax simulants can be used as countermeasures in preparative planning. While there are several accepted simulants of B. anthracis, the addition of another model organism would be beneficial. This investigation was undertaken to evaluate the suitability of B. pumilus as a simulant for B. anthracis. All organisms were grown on AK Agar #2 to foster sporulation. Optimum conditions for spore formation were determined for B. pumilus as well as for currently used anthrax surrogates B. atrophaeus and B. thuringiensis. Spore dimensions were determined by scanning electron microscopy. Comparative antibody binding studies using commercially available anti-Bacillus antisera were completed with the simulants as well as with a negative control organism, Clostridium sporogenes. We report that B. pumilus sporulated readily (2.9 × 1010 viable spores per plate), had appropriate spore size (1.24 μm × 0.59 μm) and reactivity with anti-Bacillus antibodies. The characteristics of B. pumilus determined in this study suggest this organism represents a novel, suitable model for B. anthracis.

Share and Cite:

S. B. Murphy, M. D. Holmes and S. M. Wright, "Bacillus pumilus: Possible Model for the Bioweapon Bacillus anthracis," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 382-387. doi: 10.4236/aim.2012.23048.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Hang, A. K. Sundaram, P. Zhu, D. R. Shelton, J. S. Karns, P. A. W. Martin, S. Li, P. Amstutz and C.-M. Tang, “Development of a Rapid and Sensitive Immunoassay for Detection and Subsequent Recovery of Bacillus anthracis Spores in Environmental Samples,” Journal of Microbiological Methods, Vol. 73, No. 3, 2008, pp. 242-246. doi:10.1016/j.mimet.2008.02.018
[2] T. V. Inglesby, T. O’Toole and D. A. Henderson, “Preventing the Use of Biological Weapons: Improving Response Should Prevention Fail,” Clinical Infectious Diseases, Vol. 30, No. 6, 2000, pp. 926-929. doi:10.1086/313794
[3] J. B. Wilson and K. E. Russell, “Isolation of Bacillus anthracis from Soil Stored 60 Years,” Journal of Bacteriology, Vol. 87, 1964, pp. 237-238.
[4] T. J. Cieslak and E. M. Eitzen, Jr., “Clinical and Epidemiologic Principles of Anthrax,” Emerging Infectious Diseases, Vol. 5, No. 4, 1999, pp. 552-555. doi:10.3201/eid0504.990418
[5] M. S. Traeger, S. T. Wiersma, N. E. Rosenstein, J. M. Malecki, C. W. Shepard, P. L. Raghunathan, S. P. Pillai, T. Popovic, C. P. Quinn, R. F. Meyer, S. R. Zaki, S. Kumar, S. M. Bruce, J. J. Sejvar, P. M. Dull, B. C. Tierney, J. D. Jones, B. A. Perkins and the Florida Investigation Team, “First Case of Bioterrorism-Related Inhalational Anthrax in the United States, Palm Beach County, Florida, 2001,” Emerging Infectious Diseases, Vol. 8, No. 10, 2002, pp. 1029-1034. doi:10.3201/eid0810.020354
[6] J. L. Dang, K. Heroux, J. Kearney, A. Arasteh, M. Gostomski and P. A. Emanuel, “Bacillus Spore Inactivation Methods Affect Detection Assays,” Applied and Environmental Microbiology, Vol. 67, No. 8, 2001, pp. 3665-3670. doi:10.1128/AEM.67.8.3665-3670.2001
[7] N. J. Tourasse, E. Helgason, O. A. Okstad, I. K. Hegna and A. B. Kolsto, “The Bacillus cereus Group: Novel As- pects of Population Structure and Genome Dynamics,” Journal of Applied Microbiology, Vol. 101, No. 3, 2006, pp. 579-593. doi:10.1111/j.1365-2672.2006.03087.x
[8] E. Helgason, O. A. Okstad, D. A. Caugant, H. A. Johansen, A. Fouet, M. Mock, I. Hegna and A.-B. Kolsto, “Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis—One Species on the Basis of Genetic Evidence,” Applied and Environmental Microbiology, Vol. 66, No. 6, 2000, pp. 2627-2630. doi:10.1128/AEM.66.6.2627-2630.2000
[9] V. G. DelVecchio, J. P. Connolly, T. G. Alefantis, A. Walz, M. A. Quan, G. Patra, J. M. Ashton, J. T. Whittington, R. D. Chafin, X. Liang, P. Grewal, A. S. Khan and C. V. Mujer, “Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis,” Applied and Environmental Microbiology, Vol. 72, No. 9, 2006, pp. 6355-6363. doi:10.1128/AEM.00455-06
[10] E. T. Arakawa, N. V. Lavrik andP. G. Datskos, “Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores,” Applied Optics, Vol. 42, No. 10, 2003, pp. 1757-1762. doi:10.1364/AO.42.001757
[11] M. Carrera, R. O. Zandomeni, J. Fitzgibbon and J.-L. Sagripanti, “Difference between the Spore Sizes of Bacillus anthracis and Other Bacillus Species,” Journal of Applied Microbiology, Vol. 102, No. 2, 2007, pp. 303-312. doi:10.1111/j.1365-2672.2006.03111.x
[12] M. Laue and N. Bannert, “Detection Limit of Negative Staining Electron Microscopy for the Diagnosis of Bioterrorism-Related Micro-Organisms,” Journal of Applied Microbiology, Vol. 109, No. 4, 2010, pp. 1159-1168. doi:10.1111/j.1365-2672.2010.04737.x
[13] S. Porwal, S. Lai, S. Cheema andV.P. Kalia, “Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus,” PLoS One, Vol. 4, No. 2, 2009, p. e4438. doi:10.1371/journal.pone.0004438
[14] D. L. Greenberg, J. D. Busch, P. Keim andD. M. Wagner, “Identifying Experimental Surrogates for Bacillus anthracis Spores: A Review,” Investigtive Genetics, Vol. 1, No. 1, 2010, pp. 4-16. doi:10.1186/2041-2223-1-4
[15] K. S. Ibrahim, J. Muniyandi and A. Karutha-Pandian, “Purification and Characterization of Manganese-Dependent Alkaline Serine Protease from Bacillus pumilus TMS55,” Journal of Microbiology and Biotechnology, Vol. 21, No. 1, 2011, pp. 20-27. doi:10.4014/jmb.1009.09001
[16] R. Reiss, J. Ihssen andL. Thony-Meyer, “Bacillus pumilus Laccase: A Heat Stable Enzyme with a Wide Substrate Spectrum,” BMC Biotechnology, Vol. 11, No. 9, 2011, pp. 9-20. doi:10.1186/1472-6750-11-9
[17] National Institutes of Health, “Image J: Image Processing and Analysis in Java”.
[18] M. Carrera, R. O. Zandomeni and J.-L. Sagripanti, “Wet and Dry Density of Bacillus anthracis and Other Bacillus Species,” Journal of Applied Microbiology, Vol. 105, No. 1, 2008, pp. 68-77. doi:10.1111/j.1365-2672.2008.03758.x
[19] W.-W. Yang, E. N. Crow-Willard and A. Ponce, “Production and Characterization of Pure Clostridium Spore Suspensions,” Journal of Applied Microbiology, Vol. 106, No. 1, 2009, pp. 27-33. doi:10.1111/j.1365-2672.2008.03931.x
[20] A. J. Westphal, P. B. Price, T. J. Leighton and K. E. Wheeler, “Kinetics of Size Changes of Individual Bacillus thuringiensis Spores in Response to Changes in Relative Humidity,” Proceedings of the National Academy of Sciences, Vol. 100, No. 6, 2003, pp. 3461-3466. doi:10.1073/pnas.232710999
[21] M. Plomp, T. J. Leighton, K. E. Wheeler and A. J. Malkin, “The High-Resolution Architecture and Structural Dynamics of Bacillus Spores,” Biophysical Journal, Vol. 88, No. 1, 2005, pp. 603-608. doi:10.1529/biophysj.104.049312
[22] T. L. Buhr, D. C. McPherson and B. W. Gutting, “Analysis of Broth-Cultured Bacillus atrophaeus and Bacillus cereus Spores,” Journal of Applied Microbiology, Vol. 105, No. 5, 2008, pp. 1604-1613. doi:10.1111/j.1365-2672.2008.03899.x
[23] M. M. Fazzini, R. Schuch and V. A. Fischetti, “A Novel Spore Protein, ExsM, Regulates Formation of the Exosporium in Bacillus cereus and Bacillus anthracis and Affects Spore Size and Shape,” Journal of Bacteriology, Vol. 192, No. 15, 2010, pp. 4012-4021. doi:10.1128/JB.00197-10
[24] P. Longchamp and T. Leighton, “Molecular Recognition Specificity of Bacillus globigii Spore Antibodies,” Letters in Applied Microbiology, Vol. 31, No. 3, 2000, pp. 242-246. doi:10.1046/j.1365-2672.2000.00808.x
[25] A. P. Phillips andK. L. Martin, “Investigation of Spore Surface Antigens in the Genus Bacillus by the Use of Polyclonal Antibodies in Immunofluorescence Tests,” The Journal of Applied Bacteriology, Vol. 64, No. 1, 1988, pp. 47-55. doi:10.1111/j.1365-2672.1988.tb02428.x
[26] J. J. Quinlan and P. M. Foegeding, “Monoclonal Anti- bodies for Use in Detection of Bacillus and Clostridium Spores,” Applied and Environmental Microbiology, Vol. 63, No. 2, 1997, pp. 482-487.
[27] D. Tena, J. A. Martinez-Torres, M. T. Perez-Pomata, J. A. Saez-Nieto, V. Rubio and J. Bisquert, “Cutaneous Infection Due to Bacillus pumilus: Report of 3 Cases,” Clinical and Infectious Diseases, Vol. 44, No. 4, 2007, pp. 40-42. doi:10.1086/511077

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.