Share This Article:

A Modified Precondition in the Gauss-Seidel Method

Abstract Full-Text HTML XML Download Download as PDF (Size:123KB) PP. 31-37
DOI: 10.4236/alamt.2012.23005    5,289 Downloads   13,463 Views   Citations

ABSTRACT

In recent years, a number of preconditioners have been applied to solve the linear systems with Gauss-Seidel method (see [1-7,10-12,14-16]). In this paper we use Sl instead of (S + Sm) and compare with M. Morimoto’s precondition [3] and H. Niki’s precondition [5] to obtain better convergence rate. A numerical example is given which shows the preference of our method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Nazari and S. Borujeni, "A Modified Precondition in the Gauss-Seidel Method," Advances in Linear Algebra & Matrix Theory, Vol. 2 No. 3, 2012, pp. 31-37. doi: 10.4236/alamt.2012.23005.

References

[1] T. Z. Huang, G. H. Cheng and X. Y. Cheng, “Modified SOR-Type Ierative Method for Z-Matrices,” Applied Mathematics and Computation, Vol. 175, No. 1, 2006, pp. 258-268. doi:10.1016/j.amc.2005.07.050
[2] A. D. Gunawardena, S. K. Jain and L. Snyder, “Modified Iterative Method for Consistent Linear Systems,” Linear Algebra and Its Applications, Vol. 154-156, 1991, pp. 123-143. doi:10.1016/0024-3795(91)90376-8
[3] M. Morimoto, K. Harada, M. Sakakihara and H. Sawami, “The Gauss-Seidel Iterative Method with the Preconditioning Matrix (I + S + Sm),” Japan Journal of Industrial and Applied Mathematics, Vol. 21, No. 1, 2004, pp. 25-34. doi:10.1007/BF03167430
[4] D. Noutsos and M. Tzoumas, “On Optimal Improvements of Classical Iterative Schemes for Z-Matrices,” Journal of Computational and Applied Mathematics, Vol. 188, No. 1, 2006, pp. 89-106. doi:10.1016/j.cam.2005.03.057
[5] H. Niki, T. Kohno and M. Morimoto, “The Preconditioned Gauss-Seidel Method Faster than the SOR Method,” Journal of Computational and Applied Mathematics, Vol. 218, No. 1, 2008, pp. 59-71. doi:10.1016/j.cam.2007.07.002
[6] H. Niki, T. Kohno and K. Abe, “An Extended GS Method for Dense Linear System,” Journal of Computational and Applied Mathematics, Vol. 231, No. 1, 2009, pp. 177-186. doi:10.1016/j.cam.2009.02.005
[7] M. Morimoto, H. Kotakemori, T. Kohno and H. Niki, “The Gauss-Seidel Method with Preconditioner (I + R),” Transactions of the Japan Society for Industrial and Applied Mathematics, Vol. 13, 2003, pp. 439-445.
[8] H. Niki, K. Harada, M. Morimoto and M. Sakakihara, “The Survey of Preconditioners Used for Accelerating the Rate of Convergence in the Gauss-Seidel Method,” Journal of Computational and Applied Mathematics, Vol. 164-165, 2004, pp. 587-600. doi:10.1016/j.cam.2003.11.012
[9] I. Marek and D. Szyld, “Comparison Theorems for Weak Splittings of Bound Operators,” Numerische Mathematik, Vol. 58, No. 1, 1990, pp. 387-397. doi:10.1007/BF01385632
[10] H. Kotakemori, K. Harada, M. Morimoto and H. Niki, “A Comparison Theorem for the Iterative Method with the Preconditioner (I + Smax),” Journal of Computational and Applied Mathematics, Vol. 145, No. , 2002, pp. 373-378. doi:10.1016/S0377-0427(01)00588-X
[11] A. Hadjidimos, D. Noutsos amd M. Tzoumas, “More on Modifications and Improvements of Classical Iterative Schemes for Z-Matrices,” Linear Algebra and Its Applications, Vol. 364, 2003, pp. 253-279. doi:10.1016/S0024-3795(02)00570-0
[12] T. Kohno, H. Kotakemori, H. Niki and M. Usui, “Improving the Gauss-Seidel Method for Z-Matrices,” Linear Algebra and Its Applications, Vol. 267, 1997, pp. 113-123.
[13] W. Li, “Comparison Results for Solving Preconditioned Linear Systems,” Journal of Computational and Applied Mathematics, Vol. 176, No. 2, 2005, pp. 319-329. doi:10.1016/j.cam.2004.07.022
[14] W. Li and W. Sun, “Modified Gauss-Seidel Type Methods and Jacobi Type Methods for Z-Matrices,” Linear Algebra and Its Applications, Vol. 317, 2000, pp. 227-240. doi:10.1016/S0024-3795(00)00140-3
[15] J. P. Milaszewicz, “On Modified Jacobi Linear Operators,” Linear Algebra and Its Applications, Vol. 51, 1983, pp. 127-136. doi:10.1016/0024-3795(83)90153-2
[16] J. P. Milaszewicz, “Improving Jacobi and Gauss-Seidel Iterations,” Linear Algebra and Its Applications, Vol. 93, 1987, pp. 161-170. doi:10.1016/S0024-3795(87)90321-1
[17] D. M. Young, “Iterative Solution of Large Linear Systems,” Academic Press, New York, 1971.
[18] R. S. Varga, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, 1962.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.