Biofilm Formation by Streptococcus mutans and Related Bacteria

DOI: 10.4236/aim.2012.23025   PDF   HTML     7,957 Downloads   16,143 Views   Citations


Caries is a disease of human dentition characterized by the loss of mineralized surfaces of the tooth; it is an infectious disease of the oral cavity in which biofilms play a causative role. Control of biofilms has traditionally relied on non-specific removal of plaque by mechanical means such as brushing, although it is difficult to remove biofilms by this method. Caries is also a widespread infection in children. Streptococcus mutans and S. sobrinus are important causative agents of caries. They produce a homologous exocellular polysaccharide called glucan, which strongly adheres to the enamel surface. This is a review of oral microbial biofilm formation by S. mutans and other related bacteria.

Share and Cite:

J. Nishimura, T. Saito, H. Yoneyama, L. Lan Bai, K. Okumura and E. Isogai, "Biofilm Formation by Streptococcus mutans and Related Bacteria," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 208-215. doi: 10.4236/aim.2012.23025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Hamada and H. E. Slade, “Biology, Immunology, and Cariogenicity of Streptococcus mutans,” Microbiological Reviews, Vol. 44, No. 2, 1980, pp. 331-384.
[2] J. A. Lemos and R. A. Burne, “A Model of Efficiency: Stress Tolerance by Streptococcus mutans,” Microbiology, Vol. 154, Pt 11, 2008, pp. 3247-3255. doi:10.1099/mic.0.2008/023770-0
[3] R. Bos, H. C. van der Mei and H. J. Busscher, “Physico-Chemistry of Initial Microbial Adhesive Interactions—Its Mechanisms and Methods for Study,” FEMS Microbiological Reviews, Vol. 23, No. 2, 1999, pp.179-230. doi:10.1016/S0168-6445(99)00004-2
[4] F. Ota, M. Kiso, K. Okada, H. Kato, K. Hirota, K. Fukui, M. Yasuoka, M. Ono, K. Uegaki and Y. Morimoto, “Streptococcus mutans Serotype b Strain (St. rattus, Coykendall): First Isolation in Japan from Human Dental Plaque,” Microbiology and Immunology, Vol. 29, No. 10, 1985, pp. 1005-1110.
[5] W. J. Loesche, “Dental Caries: A Treatable Infection,” Charles C. Thomas Publisher, Springfield, 1982.
[6] H. J. Busscher and H. C. van der Mei, “Physico-Chemical Interactions in Initial Microbial Adhesion and Relevance for Biofilm Formation,” Advances in Dental Research, Vol. 11, No. 1, 1997, pp. 24-32. doi:10.1177/08959374970110011301
[7] W. J. Loesche, “Role of Streptococcus mutans in Human Dental Decay,” Microbiological Reviews, Vol. 50, No. 4, 1986, pp. 353-380.
[8] D. H. Meyer and P. M. Fives-Taylor, “Oral Pathogens: from Dental Plaque to Cardiac Disease,” Current Opinion in Microbiology, Vol. 1, No. 1, 1998, pp. 88-95. doi:10.1016/S1369-5274(98)80147-1
[9] J. A. Aas, B. J. Paster, L. N. Stokes, I. Olsen and F. E. Dewhirst, “Defining the Normal Bacterial Flora of the Oral Cavity,” Journal of Clinical Microbiology, Vol. 43, No. 11, 2005, pp. 5721-5732. doi:10.1128/JCM.43.11.5721-5732.2005
[10] K. Hojo, S. Nagaoka, T. Ohshima and N. Maeda, “Bacterial Interactions in Dental Biofilm Development,” Journal of Dental Research, Vol. 88, No. 11, 2009, pp. 982-990. doi:10.1177/0022034509346811
[11] J. van Houte, “Bacterial Specificity in the Etiology of Dental Caries,” International Dental Journal, Vol. 30, No. 4, 1980, pp. 305-326.
[12] G. H. Bowden and I. R. Hamilton, “Survival of Oral Bacteria,” Critical Reviews in Oral Biology and Medicine, Vol. 9, No. 1, 1998, pp. 54-85. doi:10.1177/10454411980090010401
[13] J. Carisson, “Nutritional Requirements of Streptococcus mutans,” Caries Research, Vol. 4, No. 4, 1970, pp. 305- 320. doi:10.1159/000259653
[14] B. Terleckj and D. Shockman, “Amino Acid Requirements of Streptococcus mutans and Other Oral Streptococci,” Infection and Immunity, Vol. 11, No. 4, 1975, pp. 656-664.
[15] C. J. Griffith and J. Carlsson, “Mechanism of Ammonia Assimilation in Streptococci,” Journal of General Microbiology, Vol. 82, No. 2, 1974, pp. 253-260. doi:10.1099/00221287-82-2-253
[16] E. J. St. Martin and C. L. Wittenberger, “Regulation and Function of Ammonia-Assimilating Enzymes in Streptococcus mutans,” Infection and Immunity, Vol. 28, No. 1, 1980, pp. 220-224.
[17] D. G. Cvitkovitch, J. A. Gutierrez and A. S. Bleiweis, “Role of the Citrate Pathway in Glutamate Biosynthesis by Streptococcus mutans,” Journal of Bacteriology, Vol. 179, No. 3, 1997, pp. 650-655.
[18] N. Takahashi, K. Abbe, S. Takahashi-Abbe and T. Yamada, “Oxygen Sensitivity of Sugar Metabolism and Interconversion of Pyruvate Formate-Lyase in Intact Cells of Streptococcus mutans and Streptococcus sanguis,” Infection and Immunity, Vol. 55, No. 3, 1987, pp. 652-656.
[19] J. A. Lemos, J. Abranches and R. A. Burne, “Responses of Cariogenic Streptococci to Environmental Stresses,” Current Issues in Molecular Biology, Vol. 7, No. 1, 2005, pp. 95-107.
[20] K. Krastel, D. B. Senadheera, R. Mair, J. S. Downey, S. D. Goodman and D. G. Cvvitkovitch, “Characterization of a Glutamate Transporter Operon, glnQHMP, in Streptococcus mutans and Its Role in Acid Tolerance,” Journal of Bacteriology, Vol. 192, No. 4, 2010, pp. 984-993. doi:10.1128/JB.01169-09
[21] H. Koo, J. Xiao, M. I. Klein and J. G. Jeon, “Exopolysaccharides Produced by Streptococcus mutans Glucosyltransferases Modulate the Establishment of Microcolonies within Multispecies Biofilms,” Journal of Bacteriology, Vol. 192, No. 12, 2010, pp. 3024-3032. doi:10.1128/JB.01649-09
[22] V. Monchois, R. M. Willemot and P. Monsan, “Glucansucrases: Mechanism of Action and Structure-Function Relationships,” FEMS Microbiology Reviews, Vol. 23, 1999, pp. 131-151.
[23] T. Shiroza, S. Ueda and H. K. Kuramitsu, “Sequence Analysis of the gtfB Gene from Streptococcus mutans,” Journal of Bacteriology, Vol. 169, No. 9, 1987, pp. 4263- 4270.
[24] S. Ueda, T. Shiroza and H. K. Kuramitsu, “Sequence analysis of the gtfC gene from Streptococcus mutans GS-5,” Gene, Vol. 69, No. 1, 1988, pp. 101-109. doi:10.1016/0378-1119(88)90382-4
[25] N. Hanada and H. K. Kuramitsu, “Isolation and Characterization of the Streptococcus mutans gtfD Gene, Coding for Primer-Dependent Soluble Glucan Synthesis,” Infection and Immunity, Vol. 57, No. 7, 1989, pp. 2079-2085.
[26] V. Monchois, R. M. Willemot, M. Remaud-Simeon, C. Croux and P. Monsan, “Cloning and Sequencing of a Gene Coding for a Novel Dextransucrase from Leuconostoc mesenteroides NRRL B-1299 Synthesizing Only α(1-6) and α(1-3) Linkages,” Gene, Vol. 182, No. 1-2, 1996, pp. 23-32. doi:10.1016/S0378-1119(96)00443-X
[27] V. Monchois, M. Remaud-Simeon, P. Monsan and R. M. Willemot, “Cloning and Sequencing of a Gene Coding for an Extracellular Dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 Synthesizing Only a α(1-6) Glucan,” FEMS Microbiology Letters, Vol. 159, No. 2, 1998, pp. 307-315. doi:10.1111/j.1574-6968.1998.tb12876.x
[28] S. A. van Hijum, S. Kralj, L. K. Ozimek, L. Dijkhuizen and I. G. van Geel-Schutten, “Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria,” Microbiology and Molecular Biology Reviews, Vol. 70, No. 1, 2006, pp. 157-176. doi:10.1128/MMBR.70.1.157-176.2006
[29] N. Konishi, Y. Torii, T. Yamamoto, A. Miyagi, H. Ohta, K. Fukui, S. Hanamoto, H. Matsuno, H. Komatsu, T. Kodama and E. Katayama, “Structure and Enzymatic Properties of Genetically Truncated Forms of the Water-Insoluble Glucan-Synthesizing Glucosyltransferase from Streptococcus sobrinus,” Journal of Biochemistry, Vol. 126, No. 2, 1999, pp. 287-295. doi:10.1093/oxfordjournals.jbchem.a022447
[30] G. Mooser, “Glycosidases and glycosyltransferases,” In: D. Sigman, Ed., The Enzymes, 3rd Edition, Vol. XX, Academic Press, New York, 1992, pp. 187-233.
[31] H. Abo, T. Matsumura, T. Kodama, H. Ohta, K. Fukui, K. Kato and H. Kagawa, “Peptide Sequences for Sucrose Splitting and Glucan Binding within Streptococcus sobrinus Glucosyltransferase (Water-Insoluble Glucan Synthetase),” Journal of Bacteriology, Vol. 173, No. 3, 1991, pp. 989-996.
[32] P. M. Giffard and N. A. Jacques, “Definition of a Fundamental Repeating Unit in Streptococcal Glucosyltransferase Glucan-Binding Regions and Related Sequences,” Journal of Dental Research, Vol. 73, No. 6, 1994, pp. 1133-1141.
[33] K. B. Kingston, D. M. Allen and N. A. Jacques, “Role of the C-Terminal YG Repeats of the Primer-Dependent Streptococcal Glucosyltransferase, GtfJ, in Binding to Dextran and Mutan,” Microbiology, Vol. 148, Pt 2, 2002, pp. 549-558.
[34] D. S. Shah, G. Joucla, M. Remaud-Simeon and R. R. Russell, “Conserved Repeat Motifs and Glucan Binding by Glucansucrases of Oral Streptococci and Leuconostoc mesenteroides,” Journal of Bacteriology, Vol. 186, No. 24, 2004, pp. 8301-8308. doi:10.1128/JB.186.24.8301-8308.2004
[35] A. Nanbu, M. Hayakawa, K. Takada, N. Shinozaki, Y. Abiko and K. Fukushima, “Production, Characterization, and Application of Monoclonal Antibodies which Distinguish Four Glucosyltransferases from Streptococcus sobrinus,” FEMS Immunology and Medical Microbiology, Vol. 27, No. 1, 2000, pp. 9-15. doi:10.1111/j.1574-695X.2000.tb01405.x
[36] N. Hanada, K. Fukushima, Y. Nomura, H. Senpuku, M. Hayakawa, H. Mukasa, T. Shiroza and Y. Abiko, “Cloning and Nucleotide Sequence Analysis of the Streptococcus sobrinus gtfU Gene that Produces a Highly Branched Water-Soluble Glucan,” Biochimica et Biophysica Acta, Vol. 1570, 2001, pp. 75-79. doi:10.1016/S0304-4165(01)00240-9
[37] N. Hanada, Y. Isobe, Y. Aizawa, T. Katayama, S. Sato and M. Inoue, “Nucleotide Sequence Analysis of the gtfT Gene from Streptococcus sobrinus OMZ176,” Infection and Immunity, Vol. 61, No. 5, 1993, pp. 2096-2103.
[38] H. Komatsu, Y. Abe, K. Eguchi, H. Matsuno, Y. Matsuoka, T. Sadakane, T. Inoue, K. Fukui and T. Kodama, “Kinetics of Dextran-Independent α-(1→3)-Glucan Synthesis by Streptococcus sobrinus Glucosyltransferase I,” The FEBS Journal, Vol. 278, No. 3, 2011, pp. 531-540. doi:10.1111/j.1742-4658.2010.07973.x
[39] E. S?wén, E. Huttunen, X. Zhang, Z. Yang, G. Widmalm, “Structural Analysis of the Exopolysaccharide Produced by Streptococcus thermophilus ST1 Solely by NMR Spectroscopy,” Journal of Biomolecular NMR, Vol. 47, No. 2, 2010, pp. 125-134. doi:10.1007/s10858-010-9413-0
[40] E. L. Nordmark, Z. Yang, E. Huttunen, G. Widmalm, ”Structural Studies of an Exopolysaccharide Produced by Streptococcus thermophilus THS,” Biomacromolecules, Vol. 6, No. 1, 2005, pp. 105-108. doi:10.1021/bm0496514
[41] E. J. Faber, M. J. van den Haak, J. P. Kamerling, J. F. Vliegenthart, “Structure of the Exopolysaccharide Produced by Streptococcus thermophilus S3,” Carbohydrate research, Vol. 331, No. 2, 2001, pp.173-182. doi:10.1016/S0008-6215(01)00013-1
[42] V. M. Marshall, H. Dunn, M. Elvin, N. McLay, Y. Gu, A. P. Laws, “Structural Characterisation of the Exopolysaccharide Produced by Streptococcus thermophilus EU20,” Carbohydrate research, Vol. 331, No. 4, 2001, pp. 413-422. doi:10.1016/S0008-6215(01)00052-0
[43] F. Stingele, J. R. Neeser and B. Mollet, “Identification and Characterization of the eps (Exopolysaccharide) Gene Cluster from Streptococcus thermophilus Sfi6,” Journal of Bacteriology, Vol. 178, No. 6, 1996, pp. 1680-1690.
[44] L. Navarini, A. Abatangelo, C. Bertocchi, E. Conti, M. Bosco, F. Picotti, “Isolation and Characterization of the Exopolysaccharide Produced by Streptococcus thermophilus SFi20,” International Journal of Biological Macromolecules, Vol. 28, No. 3, 2001, pp.219-226. doi:10.1016/S0141-8130(01)00118-0
[45] V. M. Marshall, A. P. Laws, Y. Gu, F. Levander, P. R?dstr?m, L. De Vuyst, B. Degeest, F. Vaningelgem, H. Dunn, M. Elvin, “Exopolysaccharide-Producing Strains of Thermophilic Lactic Acid Bacteria Cluster into Groups According to Their EPS Structure,” Letters in Applied Microbiology, Vol. 32, No. 6, 2001, pp. 433-437. doi:10.1046/j.1472-765X.2001.00937.x
[46] J. Lemoine, F. Chirat, J. M. Wieruszeski, G. Strecker, N. Favre, J. R. Neeser, “Structural Characterization of the Exocellular Polysaccharides Produced by Streptococcus thermophilus SFi39 and SFi12,” Applied and Environmental Microbiology, Vol. 63, No. 9, 1997, pp. 3512-3518.
[47] D. Low, J. A. Ahlgren, D. Horne, D. J. McMahon, C. J. Oberg, J. R. Broadbent, “ Role of Streptococcus thermophilus MR-1C Capsular Exopolysaccharide in Cheese Moisture Retention,” Applied and Environmental Microbiology, Vol. 64, No. 6,1998, pp. 2147-2151.
[48] W.A. Bubb, T. Urashima, R. Fujiwara, T. Shinnai, H. Ariga, “Structural Characterisation of the Exocellular Polysaccharide Produced by Streptococcus thermophilus OR 901,” Carbohydrate research, Vol. 301, No.1-2, 1997, pp. 41-50. doi:10.1016/S0008-6215(97)00083-9
[49] E. J. Faber, P. Zoon, J. P. Kamerling, J. F. Vliegenthart, “The Exopolysaccharides Produced by Streptococcus thermophilus Rs and Sts Have the Same Repeating Unit but Differ in Viscosity of Their Milk Cultures,” Carbohydrate research, Vol. 310, No. 4, 1998, pp. 269-276. doi:10.1016/S0008-6215(98)00189-X
[50] J. R. Broadbent, D. J. McMahon, D. L. Welker, C. J. Oberg and S. Moineau, “Biochemistry, Genetics, and Applications of Exopolysaccharide Production in Streptococcus thermophilus: A Review,” Journal of Dairy Science, Vol. 86, No. 2, 2003, pp. 407-423. doi:10.3168/jds.S0022-0302(03)73619-4
[51] F. Stingele, J. W. Newell and J. R. Neeser, “Unraveling the Function of Glycosyltransferases in Streptococcus thermophilus Sfi6,” Journal of Bacteriology, Vol. 181, No. 20, 1999, pp. 6354-6360.
[52] A. D. Welman and I. S. Maddox, “Exopolysaccharides from Lactic Acid Bacteria: Perspectives and Challenges,” Trends in Biotechnology, Vol. 21, No. 6, pp. 269-274. doi:10.1016/S0167-7799(03)00107-0
[53] J. E. Germond, M. Delley, N. D’Amico and S. J. Vincent, “Heterologous Expression and Characterization of the Exopolysaccharide from Streptococcus thermophilus Sfi39,” European Journal of Biochemistry/FEBS, Vol. 268, No. 19, 2001, pp. 5149-5156.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.