On Propagation Problems of New Surface Wave in Cubic Piezoelectromagnetics

DOI: 10.4236/oja.2012.23012   PDF   HTML   XML   3,150 Downloads   5,891 Views   Citations


This theoretical paper analytically predicts the existence of new surface wave in propagation direction [101] in the cubic piezoelectromagnetics. The solution for the velocity of the new wave is given in an explicit form. Such new wave possesses one real component and two purely imaginary components. This corresponds to a leaky acoustic SH-wave. However, in this case the real component does not participate in the complete displacements. As a result, the new wave can represent the new shear-horizontal surface acoustic wave (SH-SAW) for suitable boundary conditions. For the me-chanically free surface, several combinations of the following electrical and magnetic boundary conditions were used: electrically closed, electrically open, magnetically closed, magnetically open surface. This new SH-SAW can propagate with the speed slightly larger than that for the SH bulk acoustic wave coupled with both the electrical and magnetic potentials. The existence conditions for the new SH-SAW were also discussed. They can be very complicated and depend on all the material parameters. It was also discussed that the results can be true for the left-handed metamaterials. It is thought that the new SH-SAW can be produced by electromagnetic acoustic transducers (EMATs) because generation of SH-SAWs is feasible with the EMATs. This can be a problem for experimentalists working in the research arenas such as acoustooptics, photonics, and acoustooptoelectronics.

Share and Cite:

A. Zakharenko, "On Propagation Problems of New Surface Wave in Cubic Piezoelectromagnetics," Open Journal of Acoustics, Vol. 2 No. 3, 2012, pp. 104-114. doi: 10.4236/oja.2012.23012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. van Suchtelen, “Product Properties: A New Application of Composite Materials,” Philips Research Reports, Vol. 27, No. 1, 1972, pp. 28-37.
[2] J. van den Boomgaard, D. R. Terrell, R. A. J. Born and H. F. J. I. Giller, “In-Situ Grown Eutectic Magneto electric Composite-Material. 1. Composition and Unidirectional Solidification,” Journal of Materials Science, Vol. 9, No. 10, 1974, pp. 1705-1709.
[3] A. M. J. G. van Run, D. R. Terrell and J. H. Scholing, “In-Situ Grown Eutectic Magnetoelectric CompositeMaterial. 2. Physical Properties,” Journal of Materials Science, Vol. 9, No. 10, 1974, pp. 1710-1714.
[4] J. van den Boomgaard, A. M. J. G. van Run and J. van Suchtelen, “Piezoelectric-Piezomagnetic Composites with Magnetoelectric Effect,” Ferroelectrics, Vol. 14, No. 1, 1976, pp. 727-728. doi:10.1080/00150197608236711
[5] V. E. Wood and A. E. Austin, “Possible Applications Magnetoelectric,” In: A. J. Freeman and H. Schmid, Eds., Magnetoelectric Interaction Phenomena in Crystals, Gordon and Breach Science Publishers, Newark, 1975, pp. 181-194.
[6] G. Srinivasan, “Magnetoelectric Composites,” Annual Review of Materials Research, Vol. 40, 2010, pp. 153-178. doi:10.1146/annurev-matsci-070909-104459
[7] ü. ?zgür, Ya. Alivov and H. Morko?, “Microwave Ferrites, Part 2: Passive Components and Electrical Tuning,” Journal of Materials Science: Materials in Electronics, Vol. 20, No. 10, 2009, pp. 911-952. doi:10.1007/s10854-009-9924-1
[8] J. Zhai, Z.-P. Xing, Sh.-X. Dong, J.-F. Li and D. Viehland, “Magnetoelectric Laminate Composites: An Overview,” Journal of the American Ceramic Society, Vol. 91, No. 2, 2008, pp. 351-358. doi:10.1111/j.1551-2916.2008.02259.x
[9] M. Fiebig, “Revival of the Magnetoelectric Effect,” Journal of Physics D: Applied Physics, Vol. 38, No. 8, 2005, pp. R123-R152. doi:10.1088/0022-3727/38/8/R01
[10] W. Eerenstein, N. D. Mathur and J. F. Scott, “Multiferroic and Magnetoelectric Materials,” Nature, Vol. 442, 2006, pp. 759-765. doi:10.1038/nature05023
[11] M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S. Ch. Yang, D. Maurya, V. Bedekar and Sh. Priya, “Magnetoelectric Interactions in Lead-Based and Lead-Free Composites,” Materials, Vol. 2011, No. 4, 2011, pp. 651702. doi:10.3390/ma4040651
[12] G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnets,” Soviet Physics Uspekhi (Uspekhi Phizicheskikh Nauk, Moscow), Vol. 25, No. 7, 1982, p. 475.
[13] W. Cheong and M. Mostovoy, “Multiferroics: A Magnetic Twist for Ferroelectricity,” Nature Materials, Vol. 6, 2007, pp. 13-20. doi:10.1038/nmat1804
[14] R. Ramesh and N. A. Spaldin, “Multiferroics: Progress and Prospects in Thin Films,” Nature Materials, Vol. 6, 2007, pp. 21-29. doi:10.1038/nmat1805
[15] T. Kimura, “Spiral Magnets as Magnetoelectrics,” Annual Review of Materials Research, Vol. 37, 2007, pp. 387413. doi:10.1146/annurev.matsci.37.052506.084259
[16] A. Melkumyan, “Twelve Shear Surface Waves Guided by Clamped/Free Boundaries in Magneto-Electro-Elastic Materials,” International Journal of Solids and Structures, Vol. 44, 2007, pp. 3594-3599. doi:10.1016/j.ijsolstr.2006.09.016
[17] A. A. Zakharenko, “Propagation of Seven New SH-SAWs in Piezoelectromagnetics of Class 6 mm,” LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruecken-Krasnoyarsk, 2010, p. 84.
[18] J. L. Bleustein, “A New Surface Wave in Piezoelectric Materials,” Applied Physics Letters, Vol. 13, No. 12, 1968, pp. 412-413. doi:10.1063/1.1652495
[19] Yu. V. Gulyaev, “Electroacoustic Surface Waves in Solids,” Soviet Physics Journal of Experimental and Theoretical Physics Letters, Vol. 9, 1969, pp. 37-38.
[20] A. A. Zakharenko, “Seven New SH-SAWs in Cubic Piezoelectromagnetics,” LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruecken-Krasnoyarsk, 2011, p. 172.
[21] A. A. Zakharenko, “First Evidence of Surface SH-Wave Propagation in Cubic Piezomagnetics,” Journal of Electromagnetic Analysis and Applications (Scientific Research Publishing, California, USA), Vol. 2, No. 5, 2010, pp. 287-296.
[22] A. A. Zakharenko, “New Solutions of Shear Waves in Piezoelectric Cubic Crystals,” Journal of Zhejiang University SCIENCE A, Vol. 8, No. 4, 2007, pp. 669-674. doi:10.1631/jzus.2007.A0669
[23] R. Ribichini, F. Cegla, P. B. Nagy and P. Cawley, “Quantitative Modeling of the Transduction of Electromagnetic Acoustic Transducers Operating on Ferromagnetic Media,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 57, No. 12, 2010, pp. 28082817. doi:10.1109/TUFFC.2010.1754
[24] R. B. Thompson, “Physical Principles of Measurements with EMAT Transducers,” In: W. P. Mason and R. N. Thurston, Eds., Physical Acoustics, Academic Press, New York, Vol. 19, 1990, pp. 157-200.
[25] M. Hirao and H. Ogi, “EMATs for Science and Industry: Noncontacting Ultrasonic Measurements,” Kluwer Academic, Boston, 2003.
[26] Sh. Kakio, T. Yamaguchi and Ya. Nakagawa, “Leaky Surface Acoustic Waves on Langasite with Thin Dielectric Films,” Japanese Journal of Applied Physics, Vol. 41, No. 5B (Part 1), 2002, pp. 3494-3497.
[27] H. Zhang, M. Murota and Ya. Shimizu, “Characteristics of Longitudinal Leaky Surface Waves Propagating on La3Ga5SiO14 Substrate,” Japanese Journal of Applied Physics, Vol. 40, No. 5B (Part 1), 2001, pp. 3755-3758.
[28] T. Sato, M. Murota and Ya. Shimizu, “Characteristics of Rayleigh and Leaky Surface Acoustic Wave Propagating on a La3Ga5SiO14 Substrate,” Japanese Journal of Applied Physics, Vol. 37, No. 5B (Part 1), 1998, pp. 29142917.
[29] M. Kadota, J. Nakanishi, T. Kitamura and M. Kumatoriya, “Properties of Leaky, Leaky Pseudo, and Rayleigh Surface Acoustic Waves on Various Rotated Y-Cut Langasite Crystal Substrates,” Japanese Journal of Applied Physics, Vol. 38, No. 5B (Part 1), 1999, pp. 3288-3292.
[30] K. Hasegawa and M. Koshiba, “Coupled-Mode Equations for Interdigital Transducers for Leaky Surface Acoustic Waves,” Japanese Journal of Applied Physics, Vol. 42, No. 5B (Part 1), 2003, pp. 3157-3160.
[31] R. Nakagawa, T. Yamada, T. Omori, K.-Y. Hashimoto and M. Yamaguchi, “Analysis of Excitation and Propagation Characteristics of Leaky Modes in Surface Acoustic Wave Waveguides,” Japanese Journal of Applied Physics, Vol. 41, No. 5B (Part 1), 2002, pp. 3460-3164.
[32] V. E. Lyamov, “Polarization Effects and Interaction Anisotropy of Acoustic Waves in Crystals,” MSU Publishing, Moscow, 1983, p. 224.
[33] V. I. Al’shits, A. N. Darinskii and J. Lothe, “On the Existence of Surface Waves in Half-infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties,” Wave Motion, Vol. 16, No. 3, 1992, pp. 265-283. doi:10.1016/0165-2125(92)90033-X
[34] A. J. Huber, B. Deutsch, L. Novotny and R. Hillenbrand, “Focusing on Surface Phonon Polaritons,” Applied Physics Letters, Vol. 92, No. 20, 2008, p. 3.
[35] I. Minin and O. Minin, “3D Diffractive Focusing THz of In-Plane Surface Plasmon Polariton Waves,” Journal of Electromagnetic Analysis & Applications, Vol. 2, 2010, pp. 116-119.
[36] G. C. Schatz, R. P. van Duyne, “Electromagnetic Mechanism of Surface-Enhanced Spectroscopy,” Wiley, New York, 2002.
[37] A. Ishikawa, T. Tanaka and S. Kawata, “Negative Magnetic Permeability in the Visible Light Region,” Physical Review Letters, Vol. 95, No. 23, 2005, p. 4.
[38] T. F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R. S. Penciu, M. Kafesaki, E. N. Economou, Th. Koschny and C. M. Soukoulis, “Experimental Demonstration of Negative Magnetic Permeability in the Far-Infrared Frequency Regime,” Applied Physics Letters, Vol. 89, No. 8, 2006, p. 3.
[39] S. T. Chui, W. H. Wang, L. Zhou and Z. F. Lin, “Longitudinal Elliptically Polarized Electromagnetic Waves in Off-Diagonal Magneto Electric Split-Ring Composites,” Journal of Physics: Condensed Matter, Vol. 21, No. 29, 2009, p. 4.
[40] H. Liu, S. N. Zhu, Y. Y. Zhu, Y. F. Chen, N. B. Ming and X. Zhang, “Piezoelectric-Piezomagnetic Multilayer with Simultaneously Negative Permeability and Permittivity,” Applied Physics Letters, Vol. 86, No. 10, 2005, p. 3.
[41] Zh. X. Liu and W. Y. Wang, “Study of the Phonon-Polaritons in Piezomagnetic Superlattices Using a Generalized Transfer Matrix Method,” Journal of Physics: Condensed Matter, Vol. 18, No. 39, 2006, pp. 9083-9092. doi:10.1088/0953-8984/18/39/034
[42] C. Potel, S. Devolder, A. Ur-Rehman, J.-F. Belleval, J.-M. Gherbezza, O. Leroy and M. Wevers, “Experimental Verification of the Theory of Multilayered Rayleigh Waves,” Journal of Applied Physics, Vol. 86, No. 2, 1999, pp. 1128-1135. doi:10.1063/1.370854
[43] A. M. Shuvaev, S. Engelbrecht, M. Wunderlich, A. Schneider and A. Pimenov, “Strong Dynamic Magnetoelectric Coupling in Metamaterial,” The European Physical Journal B, Vol. 79, No. 2, 2011, pp. 163-167. doi:10.1140/epjb/e2010-10493-1
[44] W. T. Chen, Ch. J. Chen, P. Ch. Wu, Sh. Sun, L. Zhou, G.-Y. Guo, Ch. T. Hsiao, K.-Y. Yang, N. I. Zheludev and D. P. Tsai, “Optical Magnetic Response in Three-Dimensional Metamaterial of Upright Plasmonic Metamolecules,” Optics Express, Vol. 19, No. 13, 2011, pp. 1283712842. doi:10.1364/OE.19.012837

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.