The Effects of Etomidate and Propofol Induction on Hemodynamic and Endocrine Response in Patients Undergoing Coronary Artery Bypass Graft Surgery on Cardiopulmonary Bypass


Aim: To compare the effects of propofol and etomidate induction on hemodynamic parameters and serum cortisol levels in patients with normal left ventricular function undergoing elective coronary artery bypass graft surgery on cardiopulmonary bypass. Material and Method: After approval from the Institute Ethics committee hundred American Society of Anesthesiologists (ASA) grade II or III patients undergoing scheduled coronary artery bypass surgery on cardiopulmonary bypass were enrolled in the study. Patients were allocated randomly to receive either propofol or etomidate for anesthesia induction. Anesthesia was maintained in both groups with sevoflurane, vecuronium bromide for muscle relaxation (0.1 mg/kg, boluses) and fentanyl up to a total dose of 20 mcg/kg. Result: The baseline serum cortisol values were within normal limits in both the groups. The serum cortisol levels in the propofol group increased more than two fold, whereas the values in the etomidate group decreased by close to fifty percent on weaning from cardiopulmonary bypass (CPB). There was no significant difference in serum cortisol levels in the two groups at twenty-four hours after induction, although the values were close to double the baseline levels. Hemodynamically, etomidate group was more stable than propofol group following induction of anesthesia (P < 0.05). Conclusion: The surge in serum cortisol levels on the initiation of CPB seen after the use of propofol is prevented by the use of etomidate. Serum cortisol levels in both groups are well above the baseline at twenty-four hours without any untoward effects. Etomidate provides more stable hemodynamic parameters when used for induction of anesthesia as compared to propofol.

Share and Cite:

A. Pandey, N. Makhija, S. Chauhan, S. Das, U. Kiran, A. Bisoi and R. Lakshmy, "The Effects of Etomidate and Propofol Induction on Hemodynamic and Endocrine Response in Patients Undergoing Coronary Artery Bypass Graft Surgery on Cardiopulmonary Bypass," World Journal of Cardiovascular Surgery, Vol. 2 No. 3, 2012, pp. 48-52. doi: 10.4236/wjcs.2012.23011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. G. Merin, “Is Anesthesia Beneficial to the Ischemic Heart?” Anesthesiology, Vol. 53, No. 6, 1980, pp. 439-440. doi:10.1097/00000542-198012000-00001
[2] E. A. Moffit and D. H. Sethna, “The Coronary Circulation and Myocardial Oxygenation in Coronary Artery Disease: Effects of Anesthesia,” Anesthesia & Analgesia, Vol. 65, No. 4, 1986, pp. 395-410. doi:10.1213/00000539-198604000-00018
[3] R. Singh, M. Choudhury, P. M. Kapoor and U. Kiran, “A Randomized Trial of Anesthetic Induction Agents in Patients with Coronary Artery Disease and Left Ventricular Dysfunction,” Annals of Cardiac Anaesthesia, Vol. 13, No. 3, 2010, pp. 217-223. doi:10.4103/0971-9784.69057
[4] A. Criado, J. Maseda, E. Navarro, A. Escarpa and F. Avello, “Induction of Anesthesia with Etomidate: Haemodynamic Study of 36 Patients,” British Journal of Anaesthesia, Vol. 52, No. 8, 1980, pp. 803-806. doi:10.1093/bja/52.8.803
[5] T. J. Ebert, M. Muzi, R. Berens, D. Goff and J. P. Kampine, “Sympathetic Responses to Induction of Anesthesia in Humans with Propofol or Etomidate,” Anesthesiology, Vol. 76, No. 5, 1992, pp. 725-733. doi:10.1097/00000542-199205000-00010
[6] D. F. Stowe, Z. J. Bosnjak and J. P. Kampine, “Comparison of Etomidate, Ketamine, Midazolam, Propofol, and Thiopental on Function and Metabolism of Isolated Hearts,” Anesthesia & Analgesia, Vol. 74, No. 4, 1992, pp. 547558. doi:10.1213/00000539-199204000-00015
[7] B. Riou, Y. Lecarpentier and P. Viars, “Effects of Etomidate on the Cardiac Papillary Muscle of Normal Hamsters and Those with Cardiomyopathy,” Anesthesiology, Vol. 78, No. 1, 1993, pp. 83-90. doi:10.1097/00000542-199301000-00013
[8] T. Hosten, M. Solak, L. Kilicken, D. Ozdamar and K. Toker, “The Effects of Etomidate and Propofol Induction on Hemodynamic and Endocrine Response Undergoing CABG Surgery,” Trakya Universitesi Tip Fakultesi Dergisi, Vol. 24, No. 2, 2007, pp. 114-126
[9] A. M. Zurick, H. Sigurdsson, L. S. Koehler, et al., “Magnitude and Time Course of Perioperative Adrenal Suppression with Single Dose Etomidate in Male Adult Cardiac Surgical Patients,” Anesthesiology, Vol. 65, No. 3A, 1986, p. A248.
[10] D. R. Vinson and D. R. Bradbury, “Etomidate for procedural sedation in emergency medicine,” Annals of Emergency Medicine, Vol. 39, No. 6, 2002, pp. 592-598. doi:10.1067/mem.2002.123695
[11] J. M. Bergen and D. C. Smith, “A Review of Etomidate for Rapid Sequence Intubation in the Emergency Department,” The Journal of Emergency Medicine, Vol. 15, No. 2, 1998, pp. 221-230. doi:10.1016/S0736-4679(96)00350-2
[12] P. J. Zed, R. B. Abu-Laban and D. W. Harrison, “Intubating Conditions and Hemodynamic Effects of Etomidate for Rapid Sequence Intubation in the Emergency Department: An Observational Cohort Study,” Academic Emergency Medicine, Vol. 13, No. 4, 2006, pp. 378-383. doi:10.1111/j.1553-2712.2006.tb00313.x
[13] P. E. Sokolove, D. D. Price and P. Okada, “The Safety of Etomidate for Emergency Rapid Sequence Intubation of Pediatric Patients,” Pediatric Emergency Care, Vol. 16, No. 1, 2000, pp. 18-21. doi:10.1097/00006565-200002000-00005
[14] C. M. Hohl, C. H. Kelly-Smith, T. C. Yeung, D. D. Sweet, M. M. Doyle-Waters and M. Schulzer, “The Effect of a Bolus Dose of Etomidate on Cortisol Levels, Mortality, and Health Services Utilization: A Systematic Review,” Annals of Emergency Medicine, Vol. 56, No. 2, 2010, pp. 105-113. doi:10.1016/j.annemergmed.2010.01.030
[15] M. L. Sivilotti, M. R. Filbin, H. E. Murray, P. Slasor and R. M. Walls, “Does the Sedative Agent Facilitate Emergency Rapid Sequence Intubation?” Academic Emergency Medicine, Vol. 10, No. 6, 2003, pp. 612-620. doi:10.1197/aemj.10.6.612
[16] R. L. Wagner, P. F. White, P. B. Kan, M. H. Rosenthal and D. Feldman, “Inhibition of Adrenal Steroidogenesis by the Anesthetic Etomidate,” The New England Journal of Medicine, Vol. 310, No. 22, 1984, pp. 1415-1421. doi:10.1056/NEJM198405313102202
[17] I. M. Ledingham and I. Watt, “Influence of Sedation in Critically Ill Multiple Trauma Patients,” The Lancet, Vol. 321, No. 8336, 1983, p. 1270. doi:10.1016/S0140-6736(83)92712-5
[18] G. Trapani, C. Altomare, G. Liso, E. Sanna and G. Biggio, “Propofol in Anesthesia. Mechanism of Action, Structure-Activity Relationships, and Drug Delivery,” Current Medicinal Chemistry, Vol. 7, No. 2, 2000, pp. 249-271.
[19] Y. Kotani, M. Shimazawa, S. Yoshimura, T. Iwama and H. Hara, “The Experimental and Clinical Pharmacology of Propofol, an Anesthetic Agent with Neuroprotective Properties,” CNS Neuroscience and Therapeutics, Vol. 14, No. 2, 2008, pp. 95-106.
[20] C. Vanlersberghe and F. Camu, “Propofol,” Handbook of Experimental Pharmacology, Vol. 182, 2008, pp. 227-252.
[21] G. Trapani, A. Latrofa, M. Franco, C. Altomare, E. Sanna, M. Usala, G. Biggio and G. Liso, “Propofol Analogues. Synthesis, Relationships between Structure and Affinity at GABAA Receptor in Rat Brain, and Differential Electrophysiological Profile at Recombinant Human GABAA Receptors,” Journal of Medicinal Chemistry, Vol. 41, No. 11, 1998, pp. 1846-1854. doi:10.1021/jm970681h
[22] M. D. Krasowski, A. Jenkins, P. Flood, A. Y. Kung, A. J. Hopfinger and N. L. Harrison, “General Anesthetic Potencies of a Series of Propofol Analogs Correlate with Potency for Potentiation of Gamma-Aminobutyric Acid (GABA) Current at the GABA (A) Receptor But Not with Lipid Solubility,” Journal of Pharmacology and Experimental Therapeutics, Vol. 297, No. 1, 2001, pp. 338-351.
[23] M. D. Krasowski, X. Hong, A. J. Hopfinger and N. L. Harrison, “4D-QSAR Analysis of a Set of Propofol Analogues: Mapping Binding Sites for an Anesthetic Phenol on the GABAA Receptor,” Journal of Medicinal Chemistry, Vol. 45, No. 15, 2002, pp. 3210-3221. doi:10.1021/jm010461a
[24] G. Haeseler and M. Leuwer, “High-Affinity Block of Voltage-Operated Rat IIA Neuronal Sodium Channels by 2,6-Di-tert-butylphenol, a Propofol Analogue,” European Journal of Anaesthesiology, Vol. 20, No. 3, 2003, pp. 220-224. doi:10.1097/00003643-200303000-00007
[25] G. Haeseler, M. Karst, N. Foadi, S. Gudehus, A. Roeder, H. Hecker, R. Dengler and M. Leuwer, “High-Affinity Blockade of Voltage-Operated Skeletal Muscle and Neuronal Sodium Channels by Halogenated Propofol Analogues,” British Journal of Pharmacology, Vol. 155, No. 2, 2008, pp. 265-275. doi:10.1038/bjp.2008.255
[26] C. J. Fowler, “Possible Involvement of the Endocannabinoid System in the Actions of Three Clinically Used Drugs,” Trends in Pharmacological Sciences, Vol. 25, No. 2, 2004, pp. 59-61. doi:10.1016/
[27], “Propofol Drug Information, Professional,” 2011.
[28] K. J. S. Anand and P. R. Hickey, “Halothane—Morphine Compared with High Dose Sufentanil for Anesthesia and Postoperative Analgesia in Neonatal Cardiac Surgery,” The New England Journal of Medicine, Vol. 326, No. 1, 1992, pp. 1-9. doi:10.1056/NEJM199201023260101

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.