A Novel Analytical Method for Structural Characteristics of Gene Networks and its Application

DOI: 10.4236/cmb.2012.23009   PDF   HTML     3,069 Downloads   6,307 Views  


Analyzing gene network structure is an important way to discover and understand some unknown relevant functions and regulatory mechanisms of organism at the molecular level. In this work, mutual information networks and Boolean logic networks are constructed using the methods of reverse modeling based on gene expression profiles in lung tissues with and without cancer. The comparison of these network structures shows that average degree, the proportion of non-isolated nodes, average betweenness and average coreness can distinguish the networks corresponding to the lung tissues with and without cancer. According to the difference of degree, betweenness and coreness of each gene in these networks, nine structural key genes are obtained. Seven of them which are related to lung cancer are supported by literatures. The remaining two genes AKT1 and RBL may have important roles in the formation, development and metastasis of lung cancer. Furthermore, the contrast of these logic networks suggests that the distributions of logic types are obviously different. The structural differences can help us to understand the mechanism of formation and development of lung cancer.

Share and Cite:

S. Wang, Y. Zhang, K. Li and D. Meng, "A Novel Analytical Method for Structural Characteristics of Gene Networks and its Application," Computational Molecular Bioscience, Vol. 2 No. 3, 2012, pp. 92-101. doi: 10.4236/cmb.2012.23009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Mistudomi and T. Takahashi, “Genetic Abnormalities in Lung Cancer and Their Prognostic Implication,” Gan to Kagaku Ryoho, Vol. 23, 1996, pp. 990-996.
[2] E. S. Lander and R. A. Weinberg, “Genomics: Journey to the Center of Biology,” Science, Vol. 287, No. 5459, 2000, pp. 1777-1782. doi:10.1126/science.287.5459.1777
[3] A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gilette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J. Sugarbaker and M. Meyerson, “Classification of Human Lung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 24, 2001, pp. 13790-13795. doi:10.1073/pnas.191502998
[4] D. N. Hayes, S. Monti, G. Parmigiani, C. B. Gilks, K. Naoki, A. Bhattacharjee, M. A. Socinski, C. Perou and M. Meyerson, “Gene Expression Profiling Reveals Reproducible Human Lung Adenocarcinoma Subtypes in Multiple Independent Patient Cohorts,” Journal of Clinical Oncology, Vol. 24, No. 31, 2006, pp. 5079-5090. doi:10.1200/JCO.2005.05.1748
[5] A. C. Borczuk, L. Shah, G. D. Pearson, K. L. Walter, L. Wang, J. H. Austin, R. A. Friedman and C. A. Powell, “Molecular Signatures in Biopsy Specimens of Lung Cancer,” American Journal of Respiratory and Critical Care Medicine, Vol. 170, No. 2, 2004, pp. 167-174. doi:10.1164/rccm.200401-066OC
[6] J. E. Larsen, S. J. Pavey, L. H. Passmore, R. V. Bowman, N. K. Hayward and K. M. Fong, “Gene Expression Signature Predicts Recurrence in Lung Adenocarcinoma,” Clinical Cancer Research, Vol. 13, No. 10, 2007, pp. 2946-2954. doi:10.1158/1078-0432.CCR-06-2525
[7] H. Y. Chen, S. L. Yu, C. H. Chen, G. C. Chang, C. Y. Chen, A. Yuan, et al., “A Five-Gene Signature and Clinical Outcome in Non-Small-Cell Lung Cancer,” The New England Journal of Medicine, Vol. 356, No. 1, 2007, pp. 11-20.doi:10.1056/NEJMoa060096
[8] M. F. Tsai, C. C. Wang, G. C. Chang, C. Y. Chen, C. L. Chen, Y. P. Yang, et al., “A New Tumor Suppressor DnaJ-Like Heat Shock Protein, HLJ1, and Survival of Patients with Non-Small-Cell Lung Carcinoma,” Journal of the National Cancer Institute, Vol. 98, No. 12, 2006, pp. 825-838. doi:10.1093/jnci/djj229
[9] R. Brent, “Genomic Biology,” Cell, Vol. 100, No. 1, 2000, pp. 169-183. doi:10.1016/S0092-8674(00)81693-1
[10] T. Akutsu, S. Miyano and S. Kuhara, “Identification of Genetic Networks from a Small Number of Gene Expression Patterns under the Boolean Network Model,” Pacific Symposium on Biocomputing,1999, pp. 17-28,
[11] D. Husmeier, “Reverse Engineering of Genetic Networks with Bayesian Networks,” Biochemical Society Transactions, Vol. 31, 2003, pp. 1516-1518. doi:10.1042/BST0311516
[12] E. P. Van Someren, L. F. Wessels and M. J. Reinders, “Linear Modeling of Genetic Networks from Experimental Data,” Proc Int Conf Intell Syst Mol Biol, vol. 8, pp. 355-366, 2000.
[13] T. Chen, H. Y. He and G. M. Church, “Modeling Gene Expression with Differential Equations,” Pacific Symposium on Biocomputing, 1999, pp. 29-40.
[14] W. Jiang, C. Wu, J. K. Xu, Y. Y. Yang and X. Li, “Using Decision Forest to Construct Gene Networks for Complex Disease,” Chinese Journal of Biomedical Engineering, Vol. 28, 2009, pp. 263-269.
[15] P. M. Bowers, S. J. Cokus, D. Eisenberg and T. O. Yeates, “Use of Logic Relationships to Decipher Protein Network Organization,” Science, Vol. 306, No. 5705, 2004, pp. 2246-2249. doi:10.1126/science.1103330
[16] X. Zhang, S. C. Kim, T. Wang and B. Chitta, “Joint Learning of Logic Relationships for Studying Protein Function Using Phylogenetic Profiles and the Rosetta Stone Method,” IEEE Transactions on Signal Processing, Vol. 54, No. 6, 2006, pp. 2427-2435. doi:10.1109/TSP.2006.873718
[17] J. X. Zhang, X. Ji and L. Zhang, “Extracting Three-Way Gene Interactions from Microarray Data,” Bioinformatics, Vol. 23, No. 21, 2007, pp. 2903-2909. doi:10.1093/bioinformatics/btm482
[18] M. W. Anderson, “Functional Genomics Annotation: It’s Logical! Symbolic Logic Helps Unravel Complex Protein Networks,” Scientist, Vol. 19, No. 5, 2005, p. 33.
[19] V. Spirin, M. S. Gelfand, A. A. Mironov and L. A. Mirny, “A Metabolic Network in the Evolutionary Context: Multiscale Structure and Modularity,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 23, 2006, pp. 8774-8779. doi:10.1073/pnas.0510258103
[20] G. Glazko, M. Coleman and A. Mushegian, “Similarity Searches in Genome-Wide Numerical Data Sets,” Biology Direct, Vol. 1, No. 1, 2006, pp. 1-14.
[21] P. M. Bowers, B. D. O’Connor, S. J. Cokus, E. Sprinzak, T. O. Yeates and D. Eisenberg, “Utilizing Logical Relationships in Genomic Data to Decipher Celluar Processes,” FEBS Journal, Vol. 272, No. 20, 2005, pp. 5110-5118. doi:10.1111/j.1742-4658.2005.04946.x
[22] A. V. Werhli, M. Grzegorezyk and D. Husmeier, “Comparative Evaluation of Reverse Engineering Gene Regulatory Networks with Relevance Networks Graphical Gaussian Models and Bayesian Networks,” Bioinformatics, Vol. 22, No. 20, 2006, pp. 2523-2531. doi:10.1093/bioinformatics/btl391
[23] T. J. Perkins, J. Jaeger, J. Reinitz and L. Glass, “Reverse Engineering the Gap Gene Network of Drosophila melanogaster,” PLOS Computational Biology, Vol. 2, No. 5, 2006, pp. 417-428.
[24] S. D. Wang, Y. Chen, Q. Y. Wang, E. Y. Li, Y. S. Su and D. Z. Meng, “Analysis for Gene Networks Based on Logical Relationships,” Journal of Systems Science and Complexity, Vol. 23, No. 5, 2010, pp. 999-1011, doi:10.1007/s11424-010-0205-0
[25] A. Réka and A. L. László, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics, Vol. 74, 2002, pp. 47-97. doi:10.1103/RevModPhys.74.47
[26] M. E. J. Newman and M. Girvan, “Finding and Evaluating Community Structure in Networks,” Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 69, No. 2, 2004, pp. 6113-6127. doi:10.1103/PhysRevE.69.026113
[27] L. S. Si and X. Li. “Oncogenes, Cancer Suppressor Genes, Cancer-Related Genes,” Shanxi Technology and Science Press, Xi’an, 2002.
[28] T. Nishina, T. Ishida, K. Yasumoto and K. Sugimachi, “Distribution of Fibronection in Adenocarcinoma of the Lung: Classification and Prognostic Significance,” Journal of Surgical Oncology, Vol. 43, No. 2, 1990, pp. 94-100. doi:10.1002/jso.2930430208
[29] A. Baldi, V. Esposito, A. De Luca, FuY, I. Meoli, G. G. Giordano, M. Caputi, F. Baldi and A. Giordano, “Differential Expression of Rb2/p130 and p107 in Normal Human Tissues and in Primary Lung Cancer,” Clinical Cancer Research, Vol. 3, No. 10, 1997, pp. 1691-1697.
[30] L. H. Jensen, A. Renodon-Corniere, K. C. Nitiss, B. T. Hill, J. L. Nitiss, P. B. Jensen and M. Sehested, “A Dual Mechanism of Action of Anticancer Agent F 11782 on Human Topoisomerase II Alpha,” Biochemical Pharmacology, Vol. 66, No. 4, 2003, pp. 623-631. doi:10.1016/S0006-2952(03)00342-3
[31] Y. Samuels and V. E. Velculescu, “Oncogenic Mutations of PIK3CA in Human Cnacers,” Cell Cycle, Vol. 3, No. 10, 2004, pp. 1221-1224. doi:10.4161/cc.3.10.1164
[32] R. T. Nitta, C. A. Del Vecchio, A. H. Chu, S. S. Mitra, A. K. Godwin and A. J. Wong, “The Role of the c-Jun N-Terminal Kinase 2-α-Isoform in Non-Small Cell Lung Carcinoma Tumorigenesis,” Oncogene, Vol. 30, No. 2, 2011, pp. 234-244. doi:10.1038/onc.2010.414
[33] G. Xinarianos, T. Liloglou, W. Prime, G. Sourvinos, A. Karachristos, J. R. Gosney, D. A. Spandidos and J. K. Field, “P53 Status Correlates with the Differential Expression of the DNA Mismatch Repair Protein MSH2 in Non-Small Cell Lung Carcinoma,” International Journal of Cancer, Vol. 101 No. 3, 2002, pp. 248-252. doi:10.1002/ijc.10598
[34] H. Sasaki, K. Okuda, O. Kawano, K. Endo, H. Yukiue, T. Yokoyama, M. Yano and Y. Fujii, “Nras and Kras Mutation in Japanese Lung Cancer Patients: Genotyping Analysis Using LightCycler,” Oncology Reports, Vol. 18, No. 3, 2007, pp. 623-628.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.