Share This Article:

Nonlinear Optical Studies of DNA Doped Rhodamine 6G-PVA Films Using Picosecond Pulses

Abstract Full-Text HTML XML Download Download as PDF (Size:550KB) PP. 135-139
DOI: 10.4236/opj.2012.23019    4,078 Downloads   7,053 Views   Citations

ABSTRACT

We present our results from the measurements of third-order optical nonlinearity in DNA doped Rhodamine 6G/PVA films achieved through Z-scan measurements using ~2 picosecond (ps) pulses at a wavelength of 800 nm. The films demonstrated negative nonlinear refractive index (n2) with magnitudes of (0.065 - 2.89) × 10–14 cm2/W with varying concentration of DNA. Open aperture data demonstrated strong two-photon absorption with a magnitude of ~1.6 cm/GW for films doped with 2 wt% of DNA. The recovery time of excited state population, retrieved from the degenerate pump-probe experimental data, was <4 ps. These data suggests that DNA is promising material for applications such as optical switching.

Cite this paper

Sreeja, S. , Nityaja, B. , Swain, D. , Nampoori, V. , Radhakrishnan, P. and Rao, S. (2012) Nonlinear Optical Studies of DNA Doped Rhodamine 6G-PVA Films Using Picosecond Pulses. Optics and Photonics Journal, 2, 135-139. doi: 10.4236/opj.2012.23019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. N. Prasad, “Introduction to Bio-Photonics,” Wiley, New York, 2003.
[2] N. Kitazawa, S. Miyagawa, K. Date, W. Aroonjaeng, M. Aono and Y. Watanabe, “Optical Properties of Dye-Doped Deoxyribonucleic Acid Films,” Journal of Materials Science, Vol. 44, No. 18, 2009, pp. 4999-5003. doi:10.1007/s10853-009-3764-5
[3] A. J. Steckl, “DNA—A New Material for Photonics?” Nature Photonics, Vol. 1, No. 1, 2007, pp. 3-5. doi:10.1038/nphoton.2006.56
[4] J. G. Grote, E. M. Heckman, D. Diggs, J. A. Hagen, P. Yaney, A. J. Steckl, G. S. He, Q. Zheng, P. N. Prasad, J. Zetts and F. K. Hopkins, “DNA-Based Materials for Electro-Optic Applications,” Proceedings of SPIE, Vol. 5934, 2005, pp. 38-43. doi:10.1117/12.615206
[5] A. J. Steckl, H. Spaeth, H. You, E. Gomez and J. Grote, “DNA as an Optical Material,” Optics and Photonics News, Vol. 22, No. 7, 2011, pp. 34-39. doi:10.1364/OPN.22.7.000034
[6] A. J. Steckl, A. Hagen, Z. Yu, R. A. Jones, W. Li, D. Han, D. Y. Kim and H. Spaeth, “Challenges and Opportunities for Biophotonic Devices in the Liquid State and the Solid State,” IEEE Nanotechnology Conference, Vol. 1, 2006, pp. 159-161. doi:10.1109/NANO.2006.247596
[7] J. A. Hagen, W. Li and A. J. Steckl and J.G. Grote, “Enhanced Emission Efficiency in Organic Light-Emitting Diodes Using Deoxyribonucleic Acid Complex as an Electron Blocking Layer,” Applied Physics Letters, Vol. 88, No. 17, 2006, pp. 171109-171111. doi:10.1063/1.2197973
[8] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote and A. J. Steckl, “Photoluminescence and Lasing from Deoxyribonucleic Acid (DNA) Thin Films Doped with Sulforhodamine,” Applied Optics, Vol. 46, No. 9, 2007, pp. 1507-1513. doi:10.1364/AO.46.001507
[9] Y. Kawabe, L. Wang, S. Horinouchi and N. Ogata, “Amplified Spontaneous Emission from Fluorescent-DyeDoped DNA—Surfactant Complex Films,” Advanced Materials, Vol. 12, No. 17, 2000, pp. 1281-1283. doi:10.1002/1521-4095(200009)12:17<1281::AID-ADMA1281>3.0.CO;2-0
[10] J. Grote, D. Y. Zang, F. Ouchen, G. Subramanyam, P. Yaney, C. Bartsch, E. Heckman and R. Naik, “Progress of DNA Photonics,” Proceedings of SPIE, Vol. 7765, 2010, p. 776502. doi:10.1117/12.862160
[11] N. Balan, M. Hari and V. P. N. Nampoori, “Selective Mode Excitation in Dye-Doped DNA Polyvinyl Alcohol Thin Film,” Applied Optics, Vol. 48, No. 19, 2009, pp. 3521-3525. doi:10.1364/AO.48.003521
[12] B. Sahraoui, M. Pranaitis, D. Gindre, J. Niziol and V. Ka?ukauskas, “Opportunities of Deoxyribonucleic Acid Complexes Composites for Nonlinear Optical Applications,” Journal of Applied Physics, Vol. 110, No. 8, 2011, pp. 083117-083120. doi:10.1063/1.3655985
[13] L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar and A. Miniewicz, “Biopolymer Based System Doped with NonLinear Optical Dye as a Medium for Amplified Spontaneous Emission and Lasing,” Applied Physics Letters, Vol. 99, No. 3, 2011, pp. 031107-031109. doi:10.1063/1.3610566
[14] P. Hanczyc, B. Norden and M. Samoc, “Two-Photon Absorption of Metal-Organic DNA-Probes,” Dalton Transactions, Vol. 41, No. 11, 2012, pp. 3123-3125. doi:10.1039/c2dt12264b
[15] M. Samoc, A. Samoc and J. G. Grote, “Complex Nonlinear Refractive Index of DNA,” Chemical Physics Letters, Vol. 431, No. 1-3, 2006, pp. 132-134. doi:10.1016/j.cplett.2006.09.057
[16] B. Sahraoui, M. Pranaitis, K. Iliopoulos, M. Mihaly, A. F. Comanescu, M. Moldoveanu, I. Rau and V. Ka?ukauskas, “Enhancement of Linear and Nonlinear Optical Properties of Deoxyribonucleic Acid-Silica Thin Films Doped with Rhodamine,” Applied Physics Letters, Vol. 99, No. 24, 2011, pp. 243304-243306. doi:10.1063/1.3669406
[17] B. Nithyaja, H. Misha, P. Radhakrishnan and V. P. N. Nampoori, “Effect of Deoxyribonucleic Acid on Nonlinear Optical Properties of Rhodamine 6G-Polyvinyl Alcohol Solution,” Journal of Applied Physics, Vol. 109, No. 2, 2011, pp. 023110-023113. doi:10.1063/1.3520657
[18] C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori and C. P. G. Vallabhan, “Studies of Nonlinear Absorption and Aggregation in Aqueous Solutions of Rhodamine 6G Using Transient Thermal Lens Technique,” Journal of Physics D: Applied Physics, Vol. 32, No. 4, 1999, pp. 407-411. doi:10.1088/0022-3727/32/4/009
[19] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE Journal of Quantum Electronics, Vol. 26, No. 4, 1999, pp. 760-769. doi:10.1109/3.53394
[20] S. Venugopal Rao, T. Shuvan Prashant, T. Sarma, P. K. Panda, D. Swain and S. P. Tewari, “Two-Photon and ThreePhoton Absorption in Dinapthoporphycenes,” Chemical Physics Letters, Vol. 514, No. 1-3, 2011, pp. 98-103. doi:10.1016/j.cplett.2011.08.021
[21] S. Venugopal Rao, “Large Picosecond Nonlinearity in Gold Nanoparticles Synthesized Using Coriander Leaves (Coriandrum sativum),” Journal of Modern Optics, Vol. 58, No. 12, 2011, pp. 1024-1049. doi:10.1080/09500340.2011.590903
[22] P. T. Anusha, P. Silviya Reeta, L. Giribabu, S. P. Tewari and S. Venugopal Rao, “Picosecond Optical Nonlinearities of Unsymmetrical Alkyl and Alkoxy Phthalocyanines Studied Using the Z-Scan Technique,” Materials Letters Vol. 64, No. 17, 2010, pp. 1915-1917. doi:10.1016/j.matlet.2010.06.004
[23] D. Swain, P. T. Anusha, T. Shuvan Prashant, S. P. Tewari, T. Sarma, P. K. Panda and S. Venugopal Rao, “Ultrafast Excited State Dynamics and Dispersion Studies of Nonlinear Optical Properties in Dinaphthoporphycenes,” Applied Physics Letters, Vol. 100, No. 14, 2012, pp. 141109141113. doi:10.1063/1.3701274
[24] S. Hamad, S. P. Tewari, L. Giribabu and S. Venugopal Rao, “Picosecond and Femtosecond Optical Nonlinearities of Novel Corroles,” Journal of Porphyrins and Phthalocyanines, Vol. 16, No. 1, 2012, pp. 140-148. doi:10.1063/1.3643648
[25] K. Venkata Saravanan, K. C. James Raju, M. Ghanashyam Krishna, S. P. Tewari and S. Venugopal Rao, “Large Three-Photon Absorption in Ba0.5Sr0.5TiO3 Films Studied Using Z-Scan Technique,” Applied Physics Letters, Vol. 96, No. 23, 2010, pp. 232905-232907. doi:10.1063/1.3447930
[26] G. Krishna Podagatlapalli, Syed Hamad, S. Sreedhar, S. P. Tewari and S. Venugopal Rao, “Fabrication and Characterization of Aluminum Nanostructures and Nanoparticles Obtained Using Femtosecond Ablation Technique,” Chemical Physics Letters, Vol. 530, 2012, pp. 93-97. doi:10.1016/j.cplett.2012.01.081
[27] O. Krupka, A. El-Ghayoury, I. Rau, B. Sahraoui, J. G. Grote and F. Kajzar, “NLO Properties of Functionalized DNA Thin Films,” Thin Solid Films, Vol. 516, No. 24, 2008, pp. 8932-8936. doi:10.1016/j.tsf.2007.11.089
[28] B. Kohler, “Nonradiative Decay Mechanisms in DNA Model Systems,” Journal of Physical Chemistry Letters, 1, No. 13, 2010, pp. 2047-2053. doi:10.1021/jz100491x

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.