Organic Crop Management Enhances Chicoric Acid Content in Lettuce

DOI: 10.4236/fns.2012.39171   PDF   HTML     4,452 Downloads   6,427 Views   Citations


L- chicoric acid is a dominant phenolic compound in lettuce (Lactuca sativa L.) and has been shown to accumulate in response to many abiotic stresses and crop management practices. It is a potent inhibitor of human immunodeficiency virus (HIV-1) integrase needed for the replication of this virus and for the productive infection of the host cell. L- chicoric acid has been found to act synergistically in combination with anti-HIV drugs used for treating acquired immuno-deficiency disorder (AIDS). We show in this study that organic management practices increase the chicoric acid content by nearly 2-fold compared to conventional management practices while they did not have a significant effect on the overall accumulation of phenolic compounds and antioxidants. Similar increase was observed in quercetin-3-O-glucoside under organic management. In addition, pre-plant fertilization decreased the levels of many phenolic compounds including chicoric acid under organic management unlike under conventional management. However, organically managed crop without pre-plant fertilization had better growth and produced about 2.5 times higher yield and higher chicoric acid content than did the conventionally managed crop. Thus, the results show that long term organic crop management practices, but avoiding pre-plant fertilization, can significantly enhance the yield of antiretroviral agent chicoric acid in lettuce.

Share and Cite:

C. Rajashekar, M. Oh and E. Carey, "Organic Crop Management Enhances Chicoric Acid Content in Lettuce," Food and Nutrition Sciences, Vol. 3 No. 9, 2012, pp. 1296-1302. doi: 10.4236/fns.2012.39171.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. K. Beale and W. E. Robinson Jr., “Combination of Reverse Transcriptase, Protease, and Integrase Inhibitors can be Synergistic in Vitro against Drug-Sensitive and RT Inhibitor-Resistant Molecular Clones of HIV-1,” Antiviral Research, Vol. 46, No. 3, 2000, pp. 223-232. doi:10.1016/S0166-3542(00)00083-8
[2] P. Cos, M. Maes, D. V. Berghe, N. Hermans, L. Pieters and A. Vlietinck, “Plant Substances as Anti-HIV Agents Selected according to Their Putative Mechanism of Action,” Journal of Natural Products, Vol. 67, No. 2, 2004, pp. 284-293. doi:10.1021/np034016p
[3] D. J. McColl and X. Chen, “Strand Transfer Inhibitors of HIV-1 Integrase: Bringing in a New Era of Antiretroviral Therapy,” Antiviral Research, Vol. 85, No. 1, 2010, pp. 101-118. doi:10.1016/j.antiviral.2009.11.004
[4] R. L. LaFemina, C. L. Schneider, H. L. Robbins, P. L. Callahan, K. LeGrow, E. Roth, W. A. Schleif and E. A. Emini, “Requirement of Active Human Immunodeficiency Virus Type 1 Integrase Enzyme for Productive Infection of Human T-Lymphoid Cells,” Journal of Virology, Vol. 66, 1991, pp. 7414-7419.
[5] W. E. Robinson Jr., M. O. Reinecke, S. Abdel-Malek, Q. Jia and S. A. Chow, “Inhibitors of HIV-1 Replication that Inhibit HIV Integrase,” Proceedings of National Academy of Sciences, Vol. 93, No. 13, 1996, pp. 6326-6331. doi:10.1073/pnas.93.13.6326
[6] R. A. Reinke, D. J. Lee, B. R. McDougall, P. J. King, J. Victoria, Y. Mao, X. Lei, M. G. Reinecke and W. E. Robinson Jr., “L-Chicoric Acid Inhibits Human Immunodeficiency Virus Type 1 Integration in Vivo and Is a Noncompetitive Reversible Inhibitor of HIV-1 Integrase in Vitro,” Virology, Vol. 326, No. 2, 2004, pp. 203-219. doi:10.1016/j.virol.2004.06.005
[7] Z. Lin, N. Neamati, H. Zhao, Y. Kiryu, J. A. Turpin, C. Aberham, K. Strebel, K. Kohn, M. Witvrouw, C. Pannecouque, Z. Debyser, E. D. Clercq, W. G. Rice, Y. Pommier and T. R. Burke Jr., “Chicoric Acid Analogues as HIV-1 Integrase Inhibitors,” Journal of Medicinal Chemistry, Vol. 42, No. 8, 1999, pp. 1401-1414. doi:10.1021/jm980531m
[8] D. C. Meadows, T. B. Mathews, T. W. North, M. J. Hadd, C. L. Kuo, N. Neamati and J. Gervay-Hague, “Synthesis and Biological Evaluation of Germinal Disulfones as HIV-1 Integrase Inhibitors,” Journal Medicinal Chemistry, Vol. 48, No. 14, 2005, pp. 4526-4534. doi:10.1021/jm049171v
[9] T. T. Charvat, D. J. Lee, W. E. Robinson and A. R. Chamberlin, “Design, Synthesis, and Biological Evaluation of Chicoric Acid Analogs as Inhibitors of HIV-1 Integrase,” Bioorganic Medicinal Chemistry, Vol. 14, No. 13, 2006, pp. 4552-4567. doi:10.1016/j.bmc.2006.02.030
[10] J. Blanco, V. Varghese, S. Rhee, J. M. Gatell and R. W. Shafer, “HIV-1 Integrase Inhibitor Resistance and Its Clinical Implications,” Journal of Infectious Diseases, Vol. 203, No. 9, 2011, pp. 1204-1214. doi:10.1093/infdis/jir025
[11] D. C. Crosby, X. Lei, C. G. Gibbs, B. R. McDougall, W. E. Robinson Jr. and M. G. Reinecke, “Design, Synthesis, and Biological Evaluation of Novel Hybrid Dicaffeoyltartaric/Diketo Acid and Tatrazole-Substituted L-chicoric Acid Analogue Inhibitors of Human Immunodeficiency Virus Type 1 Integrase,” Journal of Medicinal Chemistry, Vol. 53, No. 22, 2010, pp. 8161-8175. doi:10.1021/jm1010594
[12] D. C. Crosby and W. E. Robinson Jr., “Dicaffeoyltartaric Acid and Dicaffeoylquinic Acid HIV Integrase Inhibitors, in HIV-1 Integrase: Mechanism and Inhibitor Design (Ed. N. Neamati), John Wiley and Sons, Hoboken, 2011, pp. 341-362. doi:10.1002/9781118015377.ch23
[13] R. B. Wills and D. L. Stuart, “Alkylamaide and Chicoric Acid Levels in Echinacea purpurea Grown in Australia,” Food Chemistry, Vol. 67, No. 4, pp. 385-388. doi:10.1016/S0308-8146(99)00129-6
[14] K. Schutz, D. R. Kammerer, R. Carle and A. Schieber, “Characterization of Phenolic Acids and Flavonoids in Dandelion (Taraxacum officinale WEB. ex WIGG) Root and Herb by High-performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry, Rapid Communication in Mass Spectrometry, Vol. 19, No. 2, 2005, pp. 179-186. doi:10.1002/rcm.1767
[15] J. Lee and C. F. Scagel, “Chicoric Acid found in Basil (Ocimum basilicum L.) Leaves,” Food Chemistry, Vol. 115, No. 2, 2009, pp. 650-656. doi:10.1016/j.foodchem.2008.12.075
[16] I. D. Chkhikvishvili and G. I. Kahrebava, “Chicoric and Chlorogenic Acids in Plant Species from Georgia,” Applied Biochemistry and Microbiology, Vol. 37, No. 2, 2001, pp. 188-191. doi:10.1023/A:1002888016985
[17] K. Amimoto and H. Fukui, “Quantitative Differences in Biologically Active Components among Hydroponically Cultured Lettuce and Endive Cultivars,” Acta Horticulturae, Vol. 440, 1996, pp. 338-343.
[18] M. M. Oh, E. E. Carey and C. B. Rajashekar, “Environmental Stresses Induce Health-Promoting Phytochemicals in Lettuce,” Plant Physiology and Biochemistry, Vol. 47, No. 7, 2009, pp. 578-583. doi:10.1016/j.plaphy.2009.02.008
[19] M. M. Oh, E. E. Carey and C. B. Rajashekar, “Regulated Water Deficits Improve Phytochemical Concentration in Lettuce,” Journal of American Society for Horticultural Science, Vol. 135, 2010, pp. 223-229.
[20] R. A. Dixon and N. L. Paiva, “Stress-Induced Phenylpropanoid Metabolism,” Plant Cell, Vol. 7, No. 7, 1995, pp. 1085-1097. doi:10.1105/tpc.7.7.1085
[21] A. E. Mitchell, Y. Hong, E. Koh, D. M. Barrett, D. E. Bryant, R. F. Denison and S. Kaffka, “Ten-Year Comparison of the Influence of Organic and Conventional Crop Management Practices on the Content of Flavonoids in Tomatoes,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 15, 2007, pp. 6154-6159. doi:10.1021/jf070344+
[22] D. Treutter, “Managing Phenol Content in Crop Plants by Phytochemical Farming and Breeding-Visions and Constraints,” International Journal of Molecular Sciences, Vol. 11, No. 3, 2010, pp. 807-857. doi:10.3390/ijms11030807
[23] C. B. Rajashekar, E. E. Carey, X. Zhao and M. M. Oh, “Health-Promoting Phytochemicals in Fruits and Vegetables: Impact of Abiotic Stresses and Crop Production Practices,” Functional Plant Science and Biotechnology, Vol. 1, 2009, pp. 30-38.
[24] M. M. Oh, E. E. Carey and C. B. Rajashekar, “Antioxidant Phytochemicals in Lettuce in High Tunnels and Open Field,” Horticulture, Environment and Biotechnology, Vol. 52, No. 2, 2011, pp. 133-139. doi:10.1007/s13580-011-0200-y
[25] X. Zhao, T. Iwamoto and E. E. Carey, “Antioxidant Capacity of Leafy Vegetables as Affected by High Tunnel Environment, Fertilisation and Growth Stage,” Journal of the Science of Food and Agriculture, Vol. 87, No. 14, 2007, pp. 2692-2699. doi:10.1002/jsfa.3032
[26] L. Oberholtz, C. Dimitri and C. Greene, “Price Premiums Hold on as US Organic Produce Market Expands,” Outlook Report VGS30801, USDA Economic Research Service, Washington DC, 2005.
[27] OTA (Organic Trade Association), “Organic Sales Reach $31 billion,” 2012. http://www.
[28] D. Bourn and J. A. Prescott, “A Comparison of the Nutritional Value, Sensory Qualities, and Food Safety of Organically and Conventionally Produced Foods,” Critical Reviews in Food Science and Nutrition, Vol. 42, No. 1, 2002, pp. 1-34. doi:10.1080/10408690290825439
[29] J. E. Young, X. Zhao, E. E. Carey, R. Welti, S. Yang and W. Wang, “Phytochemical Phenolics in Organically Grown Vegetables,” Molecular Nutrition and Food Research, Vol. 49, No. 12, 2005, pp. 1136-1142. doi:10.1002/mnfr.200500080
[30] J. C. Pennycooke, S. Cox and C. Stushnoff, “Relationship of Cold Acclimation, Total Phenolic Content and Antioxidant Capacity with Chilling Tolerance in Petunia (Petunia × hybrida),” Environmental Experimental Botany, Vol. 53, No. 2, 2005, pp. 225-232. doi:10.1016/j.envexpbot.2004.04.002
[31] J. M. Awika, L. W. Rooney, X. Wu, R. L. Prior and L. Cisneros-Zevallos, “Screening Methods to Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products,” Journal of Agricultural Food Chemistry, Vol. 51, No. 23, 2003, pp. 6657-6662. doi:10.1021/jf034790i
[32] C. Nicolle, A. Carnat, D. Fraisse , J. Lamaison , E. Rock, H. Michel, P. Amouroux and C. Remesy, “Characterisation and Variation of Antioxidant Micronutrients in Lettuce (Lactuca sativa folium),” Journal of the Science of Food and Agriculture, Vol. 84, No. 15, 2004, pp. 20612069. doi:10.1002/jsfa.1916
[33] A. Romani, P. Pimnelli, C. Galardi, G. Sani, A. Cimato and D. Heimler, “Polyphenols in Greenhouse and OpenAir-Grown Lettuce,” Food Chemistry, Vol. 79, No. 3, 2002, pp. 337-342. doi:10.1016/S0308-8146(02)00170-X
[34] W. E. Robinson Jr., “L-Chicoric Acid, an Inhibitor of Human Immunodeficiency Virus Type 1 (HIV-1) Integrase, Improves on the in Vitro Anti-HIV-1 Effect of Zidovudine Plus a Protease Inhibitor (AG1350),” Antiviral Research, Vol. 39, No. 2, 1998, pp. 101-111. doi:10.1016/S0166-3542(98)00037-0
[35] X. Zhao, E. E. Carey, J. E. Young, W. Wang and T. Iwamoto, “Influences of Organic Fertilization, High Tunnel Environment, and Postharvest Storage on Phenolic Compounds in Lettuce,” HortScience, Vol. 42, 2007, pp. 71-76.
[36] R. Fernández-Escobar, G. Beltrán, M. A. Sánchez-Zamora, J. García-Novelo J, M. P. Aquilera and M. Uceda, “Olive Oil Quality Decreases with Nitrogen Over-Fertilization,” HortScience, Vol. 41, 2006, pp. 215-219.
[37] C. Leser and D. Treutter, “Effects of Nitrogen Supply on Growth, Contents of Phenolic Compounds and Pathogen (scab) Resistance of Apple Trees,” Physiologia Plantarum, Vol. 123, No. 1, 2005, pp. 49-56. doi:10.1111/j.1399-3054.2004.00427.x
[38] M. Bongue-Bartelsman and D. A. Philips, “Nitrogen Stress Regulates Gene Expression of Enzymes in the Flavonoid Biosynthetic Pathway of Tomato,” Plant Physiology and Biochemistry, Vol. 33, 1995, pp. 539-546.
[39] A. Kandlbinder, I. Finkemeier, D. Wormuth, M. Hanitzsch and K. Dietz, “The Antioxidant Status of Photosynthesizing Leaves under Nutrient Deficiency: Redox Regulation, Gene Expression and Antioxidant Activity in Arabidopsis thaliana,” Physiologia Plantarum, Vol. 120, No. 1, 2004, pp. 63-73. doi:10.1111/j.0031-9317.2004.0272.x
[40] A. J. Stewart, W. Chapman, G. I. Jenkins, I. Graham, T. Martin and A. Crozier, “The Effect of Nitrogen and Phosphorus Deficiency on Flavonol Accumulation in Plant Tissues,” Plant Cell and Environment, Vol. 24, 2001, pp. 1189-1197.
[41] M. C. Martinez-Ballesta, L. Lopez-Perez, M. Hernandez, C. Lopez-Berenguer, N. Fernandez-Garcia and M. Carvajal, “Agricultural Practices for Enhanced Human Health,” Phytochemistry Reviews, Vol. 7, No. 2, 2008, pp. 251-260. doi:10.1007/s11101-007-9071-3
[42] N. Candan and L. Tarhan, “The Correlation between Antioxidant Enzyme Activities and Lipid Peroxidation Levels in Mentha pulegium Organs Grown in Ca2+, Mg2+, Zn2+ and Mn2+ Stress Conditions,” Plant Science, Vol. 165, No. 4, 2003, pp. 769-776. doi:10.1016/S0168-9452(03)00269-3
[43] M. Burger and L. E. Jackson, “Microbial Immobilization of Ammonium and Nitrate in Relation to Ammonification and Nitrification Rates in Organic and Conventional Cropping Systems,” Soil Biology and Biochemistry, Vol. 35, No. 1, 2003, pp. 29-36. doi:10.1016/S0038-0717(02)00233-X
[44] C. Tu, J. B. Ristaino and S. Hu, “Soil Microbial Biomass and Activity in Organic Tomato Farming Systems: Effects of Organic Inputs and Straw Mulching,” Soil Biology and Biochemistry, Vol. 38, No. 2, 2006, pp. 247-255. doi:10.1016/j.soilbio.2005.05.002
[45] M. J. Harrison and R. A. Dixon, “Isoflavonoid Accumulation and Expression of Defense Gene Transcripts during the Establishment of Vesicular-Arbuscular Mycorrhizal Associations in Roots of Medicago truncatula,” Molecular Plant-Microbe Interactions, Vol. 6, 1993, pp. 643-654. doi:10.1094/MPMI-6-643
[46] T. S. Walker, H. P. Bais, E. Grotewold and J. M. Vivanco, “Root Exudation and Rhizosphere Biology,” Plant Physiolgy, Vol. 132, 2003, pp. 44-51.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.