Non-Isothermal Degradation Kinetics of Hybrid Copolymers Containing Thermosensitive and Polypeptide Blocks


Novel, self-associating hybrid copolymers were synthesized via controlled ring-opening polymerization of N-carboxyanhydride of Z-L-lysine (Z-L-Lys-NCA), initiated by amino-functional macroinitiators. A poly(N-isopropylacry-lamide) (PNIPAm)-based macroinitiator containing 10 mol% of polyoxyethylene grafts and a terminal primary amine group in the form of ammonium hydrochloride (PNIPAm-g-PEО) was synthesized and used to initiate the ammonium- mediated ring-opening polymerization of NCA described by Dimitrov and Schlaad [1]. Thus, hybrid copolymers ((PNIPAm-g-PEO)-b-PLys) with controlled molar-mass characteristics and functionality were obtained. The potential applications of PNIPAm-based copolymers in the systems for controlled drug release, immobilization of enzymes and protein purification have aroused great interest in the studies of their properties and behaviour. The thermal stability and thermodynamic properties of the copolymers obtained were studied. The differential thermal analysis of polyfunctional hybrid copolymers (PNIPAm-g-PEO)-b-PLys) showed that thermooxidative destruction occurs in two stages: primary, of the unstable fragments (grafted chains of PEO); and secondary, of the main polymer chains of poly(N-isopropylacry-lamide) and poly(L-lysine). The kinetics of thermal degradation was evaluated and the values of the activation energy of the degradation process, changes of Gibbs free energy, enthalpy and entropy for the formation of the activated complex were also calculated.

Share and Cite:

E. Ivanova, I. Dimitrov, V. Georgieva and S. Turmanova, "Non-Isothermal Degradation Kinetics of Hybrid Copolymers Containing Thermosensitive and Polypeptide Blocks," Open Journal of Polymer Chemistry, Vol. 2 No. 3, 2012, pp. 91-98. doi: 10.4236/ojpchem.2012.23012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. Dimitrov and H. Schlaad, “Synthesis of Nearly Monodisperse Polystyrene-Polypeptide Block Copolymers via Polymerisation of N-Carboxyanhydrides,” Chemical Communications, No. 23, 2003, pp. 2944-2945. doi:10.1039/b308990h
[2] T. J. Deming, “Polypeptide and Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization,” Advances in Polymer Science, Vol. 202, 2006, pp. 1-18. doi:10.1007/12_080
[3] I. Dimitrov and I. Berlinova,” Synthesis of Poly(Ethylene Oxide)s Bearing Functional Groups along the Chain,” Macromolecular Rapid Communications, Vol. 24, No. 9, 2003, pp. 551-555. doi:10.1002/marc.200390086
[4] J. Jagur-Grodzinski, “Preparation of Functionalized Polymers Using Living and Controlled Polymerizations,” Reactive and Functional Polymers, Vol. 49, No. 1, 2001, pp. 1-54. doi:10.1016/S1381-5148(01)00059-1
[5] I. Dimitrov, I. Berlinova and N. Vladimirov, “Synthesis of Poly(oxyethylene)-Poly(Z-L-lyzine) Hybrid Graft Copolymers,” Macromolecules, Vol. 39, No. 6, 2006, pp. 2423-2426. doi:10.1021/ma0524981
[6] I. Berlinova, I. Dimitrov, R. Kalinova and N. Vladimirov, “Synthesis and Aqueous Solution Behaviour of Copolymers Containing Sulfobetaine Moieties in Side Chains,” Polymer, Vol. 41, No. 3, 2000, pp. 831-837. doi:10.1016/S0032-3861(99)00264-5
[7] A. Hirao and M. Hayashi, “Recent Advance in Syntheses and Applications of Well-Defined End-Functionalized Polymers by Means of Anionic Living Polymerization,” Acta Polymerica, Vol.50, No. 7, 1999, pp. 219-231. doi:10.1002/(SICI)1521-4044(19990701)50:7<219::AID-APOL219>3.0.CO;2-U
[8] I. Berlinova, A. Nedelcheva, V. Samichkov and Ya. Ivanov, “Thermally Induced Hydrogel Formation in Aqueous Solutions of Poly(N-isopropylacrylamide) and FluorocarbonModified Poly(oxyethylene)s,” Polymer, Vol. 43, No. 26, 2002, pp. 7243-7250. doi:10.1016/S0032-3861(02)00678-X
[9] F. Meng, Z. Zhong and J. Feijen, “Stimuli-Responsive Polymersomes for Programmed Drug Delivery,” Biomacromolecules, Vol. 10, No. 2, 2009, pp. 197-209. doi:10.1021/bm801127d
[10] V. Georgieva, D. Zvezdova and L. Vlaev, “Non-Isothermal Kinetics of Thermal Degradation of Chitin,” Journal of Thermal Analysis and Calorimetry, 2012, in Press. doi:10.1007/s10973-012-2359-6
[11] R. Bigda and A. Mianowski, “Influence of Heating Rate on Kinetic Quantities of Solid Phase Thermal Decomposition,” Journal of Thermal Analysis and Calorimetry, Vol. 84, No. 2, 2006, pp. 453-465. doi:10.1007/s10973-005-7378-0
[12] C. L. Albano, E. S. Sciamanna, T. Aquno and J. J. Martinez, “Metodology to Evaluate Thermogravimetric Data Using Computational Techniques in the Polymer Field,” European Congress on Computational Methods in Applied Science and Engineering, Barcelona, 11-14 September 2000.
[13] E. Ivanova, I. Dimitrov, R. Kozarova, S. Turmanova and M. Apostolova, “Thermally Sensitive Polypeptide-Based Copolymers for DNA Complexation into Stable Nanosized Polyplexes,” Nano Research, 2012, Submitted.
[14] A. Cadenato, J. M. Morancho, X. Fernandez-Francos, J. M. Salla and X. Ramis, “Comparative Kinetic Study of the Non-Isothermal Curing of bis-GMA/TEGDMA Systems,” Journal of Thermal Analysis and Calorimetry, Vol. 89, No. 1, 2007, pp. 233-244. doi:10.1007/s10973-006-7567-5
[15] L. T. Vlaev, V. G. Georgieva and S. D. Genieva, “Products and Kinetics of Non-Isothermal Decomposition of Vanadium(IV) Oxide Compounds,” Journal of Thermal Analysis and Calorimetry, Vol. 88, No. 3, 2007, pp. 805-812. doi:10.1007/s10973-005-7149-y
[16] J. ?estak and G. Berggren, “Study of the Kinetics of the Mechanism of Solid-State Reactions at Increasing Temperatures,” Thermochimica Acta, Vol. 3, 1971, pp. 1-12. doi:10.1016/0040-6031(71)85051-7
[17] Y. Chen and Q. Wang, “Thermal oxidative Degradation Kinetics of Flame-Treated Polypropylene with Intumescent Flame-Retardant Master Batches in Situ Prepared in Twin-Screw Extruder,” Polymer Degradation and Stability, Vol. 92, No. 2, 2007, pp. 280-291. doi:10.1016/j.polymdegradstab.2006.11.004
[18] S. M. Lomakin, L. L. Dubnikova, S. M. Berezina and G. E. Zaikov, “Kinetic Study of Polypropylene Nanocomposite Thermo-Oxidative Degradation,” Polymer International, Vol. 54, No. 7, 2005, pp. 999-1006. doi:10.1002/pi.1795
[19] X. Ramis, A. Cadenato, J. M. Salla, J. M. Morancho, A. Valles, L. Contat and A. Ribes, “Thermal Degradation of Polypropylene/Starch-Based Materials with Enhanced Biodegradability,” Polymer Degradation and Stability, Vol. 86, No. 3, 2004, pp. 483-491. doi:10.1016/j.polymdegradstab.2004.05.021
[20] B. Boonchom and M. Thongkam, “Kinetics and Thermodynamics of the Formation of MnFeP4O12,” Journal of Chemical & Engineering Data, Vol. 55, No. 1, 2010, pp. 211-216. doi:10.1021/je900310m
[21] W. He, F. Deng, G. X. Liao, W. Lin, Y. Y. Jiang and X. G. Jian, “Kinetics of Thermal Degradation of Poly(aryl ether) Containing Phthalazinone and Life Estimation,” Journal of Thermal Analysis and Calorimetry, Vol. 100, No. 3, 2010, pp. 1055-1062. doi:10.1007/s10973-009-0515-4
[22] H. Wang, X. Tao and E. Newton,” Thermal Degradation Kinetics and Lifetime Prediction of a Luminescent Conducting Polymer,” Polymer International, Vol. 53, No. 1, 2004, pp. 20-26. doi:10.1002/pi.1279
[23] W. Coats and J. P. Redfern, “Kinetic Parameters for Thermogravimetric Data,” Nature, Vol. 201, No. 4914, 1964, pp. 68-69. doi:10.1038/201068a0
[24] S. Ch. Turmanova, S. D. Genieva, A. S. Dimitrova and L. T. Vlaev, “Non-Isothermal Degradation Kinetics of Filled with Rice Husk Ash Polypropene Composites,” Express Polymer Letters, Vol. 2, No. 2, 2008, pp. 133-146. doi:10.3144/expresspolymlett.2008.18
[25] L. Vlaev, N. Nedelchev, K. Gyurova and M. Zagorcheva, “A Comparative Study of Non-Isothermal Kinetics of Decomposition of Calcium Oxalate Monohydrate,” Journal of Analytical and Applied Pyrolysis, Vol. 81, No. 2, 2008, pp. 253-262. doi:10.1016/j.jaap.2007.12.003
[26] A. Ruvolo-Filho and P. S. Curti, “Chemical Kinetic Model and Thermodynamic Compensation Effect of Alkaline Hydrolysis of Waste Poly(ethylene terepftalate) in Nonaqueous Ethylene Glycol Solution,” Industrial & Engineering Chemistry Research, Vol. 45, No. 24, 2006, pp. 7985-7996. doi:10.1021/ie060528y

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.