Strategies for Human Adipose Tissue Repair and Regeneration


In plastic and reconstructive surgery there is an increasing demand for malleable implants to repair soft tissue congenital defects, or those resulting from aging, traumatic injury and tumour resection. However, currently available methods present a number of limitations such as volume loss over time and eventual resorption of the graft. Tissue engineering techniques provide promising therapeutic solutions to these inconveniences through development of engineered equivalents that best imitate adipose tissue, both structurally and functionally. Here we review the latest achievements in the human adipose tissue engineering field, with a focus on its regenerative potential for a number of clinical applications.

Share and Cite:

A. Monfort and A. Izeta, "Strategies for Human Adipose Tissue Repair and Regeneration," Journal of Cosmetics, Dermatological Sciences and Applications, Vol. 2 No. 2A, 2012, pp. 93-107. doi: 10.4236/jcdsa.2012.222021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Karastergiou and V. Mohamed-Ali, “The Autocrine and Paracrine Roles of Adipokines,” Molecular and Cellular Endocrinology, Vol. 318, No. 1-2, 2010, pp. 69-78. doi:10.1016/j.mce.2009.11.011
[2] S. C. Butterwith, “Regulators of Adipocyte Precursor Cells,” Poultry Science, Vol. 76, No. 1, 1997, pp. 118-123.
[3] S. Cinti, “Reversible Physiological Transdifferentiation in the Adipose Organ,” Proceedings of the Nutrition Society, Vol. 68, No. 4, 2009, pp. 340-349. doi:10.1017/S0029665109990140
[4] H. Fujita, C. Asagami, Y. Oda, T. Mori and Y. Suetomi, “Electron Microscopic Studies of the Differentiation of Fat Cells in Human Fetal Skin,” The Journal of Investigative Dermatology, Vol. 53, No. 2, 1969, pp. 122-139.
[5] L. Napolitano, “The Differentiation of White Adipose Cells. An Electron Microscope Study,” The Journal of Cell Biology, Vol. 18, No. 3, 1963, pp. 663-679.
[6] M. P. Mattson, “Perspective: Does Brown Fat Protect against Diseases of Aging?” Ageing Research Reviews, Vol. 9, No. 1, 2010, pp. 69-76. doi:10.1016/j.arr.2009.11.004
[7] J. Nedergaard, T. Bengtsson and B. Cannon, “Three Years with Adult Human Brown Adipose Tissue,” Annals of the New York Academy of Sciences, Vol. 1212, No. 1, 2010, pp. E20-E36.
[8] J. Nedergaard and B. Cannon, “The Changed Metabolic World with Human Brown Adipose Tissue: Therapeutic Visions,” Cell Metabolism, Vol. 11, No. 4, 2010, pp. 268- 272. doi:10.1016/j.cmet.2010.03.007
[9] T. Purnak, E. Ozaslan, C. Efe and H. Sevimler, “A Miss- ing Link in the Puzzle: Brown Adipose Tissue,” Hepa- tology, Vol. 51, No. 4, 2010, pp. 1470-1471. doi:10.1002/hep.23559
[10] Y.-H. Tseng, A. M. Cypess and C. R. Kahn, “Cellular Bioenergetics as a Target for Obesity Therapy,” Nature Reviews Drug Discovery, Vol. 9, No. 6, 2010, pp. 465- 482. doi:10.1038/nrd3138
[11] E. Carletti, A. Motta and C. Migliaresi, “Scaffolds for Tissue Engineering and 3D Cell Culture,” Methods in Molecular Biology, Vol. 695, 2011, pp. 17-39.
[12] Neuber, “Fat Trasplantation,” Verhandlungen Der Deutschen Gesellschaft Für Chirurgie, 1893.
[13] E. Lexer, “Freie Fettransplantation,” Dtsch Med Wochenschr, Vol. 36, 1910, p. 640.
[14] Rehn, “Die Fetttransplantaton,” Arch Klin Chir, Vol. 98, 1912, p. 1.
[15] L. A. Peer, “The Neglected Free Fat Graft,” Plastic & Reconstructive Surgery, Vol. 18, No. 4, 1956, pp. 233-250.
[16] C. W. Patrick Jr., P. B. Chauvin, J. Hobley and G. P. Reece, “Preadipocyte Seeded PLGA Scaffolds for Adipose Tissue Engineering,” Tissue Engineering, Vol. 5, No. 2, 1999, pp. 139-151. doi:10.1089/ten.1999.5.139
[17] C. W. Patrick Jr., B. Zheng, C. Johnston and G. P. Reece, “Long-Term Implantation of Preadipocyte-Seeded PLGA Scaffolds,” Tissue Engineering, Vol. 8, No. 2, 2002, pp. 283-293. doi:10.1089/107632702753725049
[18] B. Sommer and G. Sattler, “Current Concepts of Fat Graft Survival: Histology of Aspirated Adipose Tissue and Review of the Literature,” Dermatologic Surgery, Vol. 26, No. 12, 2000, pp. 1159-1166. doi:10.1046/j.1524-4725.2000.00278.x
[19] J.-H. Choi, J. M. Gimble, K. Lee, K. G. Marra, J. P. Rubin, J. J. Yoo, G. Vunjak-Novakovic and D. L. Kaplan, “Adipose Tissue Engineering for Soft Tissue Regenera- tion,” Tissue Engineering Part B: Reviews, Vol. 16, No. 4, 2010, pp. 413-426. doi:10.1089/ten.teb.2009.0544
[20] L. C. Clauser, R. Tieghi, M. Galie, F. Carinci, et al., “Structural Fat Grafting: Facial Volumetric Restoration in Complex Reconstructive Surgery,” Journal of Craniofacial Surgery, Vol. 22, No. 5, 2011, pp. 1695-1701. doi:10.1097/SCS.0b013e31822e5d5e
[21] B. S. Korn, D. O. Kikkawa, S. R. Cohen, M. Hartstein and C. C. Annunziata, “Treatment of Lower Eyelid Malposition with Dermis Fat Grafting,” Ophthalmology, Vol. 115, No. 4, 2008, pp. 744-751.
[22] R. Rauso, G. Tartaro, N. Freda, A. Rusciani and G. Curinga, “A Facial Marker in Facial Wasting Rehabilitation,” The Journal of Drugs in Dermatology, Vol. 11, No. 2, 2012, pp. 202-208.
[23] M. Wetterau, C. Szpalski, A. Hazen and S. M. Warren, “Autologous Fat Grafting and Facial Reconstruction,” Journal of Craniofacial Surgery, Vol. 23, No. 1, 2012, pp. 315-318. doi:10.1097/SCS.0b013e318241e1de
[24] J. C. Alencar, S. H. Andrade, S. G. Pessoa and I. S. Dias, “Autologous Fat Transplantation for the Treatment of Progressive Hemifacial Atrophy (Parry-Romberg Syndrome: Case Report and Review of Medical Literature),” Anais Brasileiros De Dermatologia, Vol. 86, No. 4, 2011, pp. S85-S88. doi:10.1590/S0365-05962011000700022
[25] J.-H. Jun, H.-Y. Kim, H.-J. Jung, W.-J. Lee, S.-J. Lee, D.-W. Kim, M.-B. Kim and B.-S. Kim, “Parry-Romberg Syndrome with En Coup de Sabre,” Annals of Dermatology, Vol. 23, No. 3, 2011, pp. 342-347. doi:10.5021/ad.2011.23.3.342
[26] M. V. Karaaltin, A. C. Akpinar, S. Baghaki and F. Akpinar, “Treatment of ‘En Coup De Sabre’ Deformity with Adipose-Derived Regenerative Cell-Enriched Fat Graft,” Journal of Craniofacial Surgery, Vol. 23, No. 2, 2012, pp. e103-e105. doi:10.1097/SCS.0b013e3182418ce8
[27] R. Guijarro-Martínez, L. M. Alba, M. M. Mateo, M. P. Torres and J. V. P. Gil, “Autologous Fat Transfer to the Cranio-Maxillofacial Region: Updates and Controversies,” Journal of Cranio-Maxillo-Facial Surgery, Vol. 39, No. 5, 2011, pp. 359-363. doi:10.1016/j.jcms.2010.07.004
[28] C. W. Chan, S. J. McCulley and R. D. Macmillan, “Autolo- gous Fat Transfer—A Review of the Literature with a Focus on Breast Cancer Surgery,” Journal of Plastic, Reconstructive & Aesthetic Surgery, Vol. 61, No. 12, 2008, pp. 1438-1448. doi:10.1016/j.bjps.2008.08.006
[29] D. ELFadl, V. Garimella, T. K. Mahapatra, P. L. McManus and P. J. Drew, “Lipomodelling of the Breast: A Re- view,” The Breast, Vol. 19, No. 3, 2010, pp. 202-209. doi:10.1016/j.breast.2010.02.009
[30] H. Mizuno and H. Hyakusoku, “Fat Grafting to the Breast and Adipose-Derived Stem Cells: Recent Scientific Consensus and Controversy,” Aesthetic Surgery Journal, Vol. 30, No. 3, 2010, pp. 381-387. doi:10.1177/1090820X10373063
[31] M. Klinger, F. Caviggioli, V. Vinci, A. Salval and F. Villani, “Treatment of Chronic Posttraumatic Ulcers Using Autologous Fat Graft,” Plastic & Reconstructive Surgery, Vol. 126, No. 3, 2010, pp. 154e-155e. doi:10.1097/PRS.0b013e3181e3b585
[32] R. A. Glasgold, S. M. Lam and M. J. Glasgold, “Facial Fat Grafting: The New Paradigm,” Archives of Facial Plastic Surgery, Vol. 10, No. 6, 2008, pp. 417-418. doi:10.1001/archfaci.10.6.417
[33] M. Glashofer and N. Lawrence, “Fat Transplantation for Treatment of the Senescent Face,” Dermatologic Therapy, Vol. 19, No. 3, 2006, pp. 169-176. doi:10.1111/j.1529-8019.2006.00071.x
[34] S. Kranendonk and S. Obagi, “Autologous Fat Transfer for Periorbital Rejuvenation: Indications, Technique, and Complications,” Dermatologic Surgery, Vol. 33, No. 5, 2007, pp. 572-578. doi:10.1111/j.1524-4725.2007.33116.x
[35] B. Nicareta, L. H. Pereira, A. Sterodimas and Y. G. Illouz, “Autologous Gluteal Lipograft,” Aesthetic Plastic Surgery, Vol. 35, No. 2, 2011, pp. 216-224. doi:10.1007/s00266-010-9590-y
[36] C. J. Salgado, J. C. Tang and A. E. Desrosiers, “Use of Dermal Fat Graft for Augmentation of the Labia Majora,” Journal of Plastic, Reconstructive & Aesthetic Surgery, Vol. 65, No. 2, 2012, pp. 267-270. doi:10.1016/j.bjps.2011.07.010
[37] D. E. Panfilov, “Augmentative Phalloplasty,” Aesthetic Plastic Surgery, Vol. 30, No. 2, 2006, pp. 183-197. doi:10.1007/s00266-004-0153-y
[38] Y. Har-Shai, E. Lindenbaum, O. Ben-Itzhak and B. Hirshowitz, “Large Liponecrotic Pseudocyst Formation Following Cheek Augmentation by Fat Injection,” Aesthetic Plastic Surgery, Vol. 20, No. 5, 1996, pp. 417-419. doi:10.1007/BF02390317
[39] G. F. Maillard, “Liponecrotic Cysts after Augmentation Mammaplasty with Fat Injections,” Aesthetic Plastic Surgery, Vol. 18, No. 4, 1994, pp. 405-406. doi:10.1007/BF00451348
[40] D. A. Young and K. L. Christman, “Injectable Biomate- rials for Adipose Tissue Engineering,” Biomedical Materials, Vol. 7, No. 2, 2012, Article ID: 024104. doi:10.1088/1748-6041/7/2/024104
[41] J. D. Meier, R. A. Glasgold and M. J. Glasgold, “Autolo- gous Fat Grafting: Long-Term Evidence of Its Efficacy in Midfacial Rejuvenation,” Archives of Facial Plastic Surgery, Vol. 11, No. 1, 2009, pp. 24-28. doi:10.1001/archfacial.2008.518
[42] T. Tiryaki, N. Findikli and D. Tiryaki, “Staged Stem Cell- Enriched Tissue (Set) Injections for Soft Tissue Augmentation in Hostile Recipient Areas: A Preliminary Report,” Aesthetic Plastic Surgery, Vol. 35, No. 6, 2011, pp. 965-971. doi:10.1007/s00266-011-9716-x
[43] P. S. Wiggenhauser, D. F. Müller, F. P. W. Melchels, J. T. Ega?a, K. Storck, H. Mayer, P. Leuthner, D. Skodacek, U. Hopfner, H. G. Machens, R. Staudenmaier and J. T. Schantz, “Engineering of Vascularized Adipose Con- structs,” Cell and Tissue Research, Vol. 347, No. 3, 2012, pp. 747-757. doi:10.1007/s00441-011-1226-2
[44] K. Yoshimura, K. Sato, N. Aoi, M. Kurita, T. Hirohi and K. Harii, “Cell-Assisted Lipotransfer for Cosmetic Breast Augmentation: Supportive Use of Adipose-Derived Stem/ Stromal Cells,” Aesthetic Plastic Surgery, Vol. 32, No. 1, 2008, pp. 48-55. doi:10.1007/s00266-007-9019-4
[45] S. H. Jeong, S. K. Han and W. K. Kim, “Soft Tissue Augmentation Using in vitro Differentiated Adipocytes: A Clinical Pilot Study,” Dermatologic Surgery, Vol. 37, No. 6, 2011, pp. 760-767.
[46] M. Kim, I. Kim, S. K. Lee, S. I. Bang and S. Y. Lim, “Clinical Trial of Autologous Differentiated Adipocytes from Stem Cells Derived from Human Adipose Tissue,” Dermatologic Surgery, Vol. 37, No. 6, 2011, pp. 750-759. doi:10.1111/j.1524-4725.2011.01765.x
[47] J. H. Rosing, G. Wong, M. S. Wong, D. Sahar, T. R. Stevenson and L. L. Q. Pu, “Autologous Fat Grafting for Primary Breast Augmentation: A Systematic Review,” Aesthetic Plastic Surgery, Vol. 35, No. 5, 2011, pp. 882- 890. doi:10.1007/s00266-011-9691-2
[48] C. J. Tabit, G. C. Slack, K. Fan, D. C. Wan and J. P. Bradley, “Fat Grafting versus Adipose-Derived Stem Cell Therapy: Distinguishing Indications, Techniques, and Outcomes,” Aesthetic Plastic Surgery, Vol. 36, No. 3, 2012, pp. 704-713.
[49] K.-M. Moon, Y.-H. Park, J.-S. Lee, Y.-B. Chae, M.-M. Kim, D.-S. Kim, B.-W. Kim, S.-W. Nam and J.-H. Lee, “The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes,” International Journal of Molecular Sciences, Vol. 13, No. 1, 2012, pp. 1239-1257. doi:10.3390/ijms13011239
[50] A. Murad, A. K. Nath, S. T. Cha, E. Demir, J. Flores- Riveros and M. R. Sierra-Honigmann, “Leptin Is an Autocrine/Paracrine Regulator of Wound Healing,” The FASEB Journal, Vol. 17, No. 13, 2003, pp. 1895-1897.
[51] P. Bauer-Kreisel, A. Goepferich and T. Blunk, “Cell- Delivery Therapeutics for Adipose Tissue Regeneration,” Advanced Drug Delivery Reviews, Vol. 62, No. 7-8, 2010, pp. 798-813. doi:10.1016/j.addr.2010.04.003
[52] F. O. Adebonojo, “Studies on Human Adipose Cells in Culture: Relation of Cell Size and Multiplication to Donor Age,” Yale Journal of Biology & Medicine, Vol. 48, No. 1, 1975, pp. 9-16.
[53] G. Entenmann and H. Hauner, “Relationship between Replication and Differentiation in Cultured Human Adipocyte Precursor Cells,” American Journal of Physiol- ogy—Cell Physiology, Vol. 270, No. 4, 1996, pp. C1011- C1016.
[54] E. Sonoda, S. Aoki, K. Uchihashi, H. Soejima, S. Kanaji, K. Izuhara, S. Satoh, N. Fujitani, H. Sugihara and S. Toda, “A New Organotypic Culture of Adipose Tissue Fragments Maintains Viable Mature Adipocytes for a Long Term, Together with Development of Immature Adipocytes and Mesenchymal Stem Cell-Like Cells,” Endocrinology, Vol. 149, No. 10, 2008, pp. 4794-4798. doi:10.1210/en.2008-0525
[55] H. H. Zhang, S. Kumar, A. H. Barnett and M. C. Eggo, “Ceiling Culture of Mature Human Adipocytes: Use in Studies of Adipocyte Functions,” Journal of Endocrinology, Vol. 164, No. 2, 2000, pp. 119-128. doi:10.1677/joe.0.1640119
[56] C. W. Patrick, Jr., “Tissue Engineering Strategies for Adipose Tissue Repair,” The Anatomical Record, Vol. 263, No. 4, 2001, pp. 361-366. doi:10.1002/ar.1113
[57] A. Monfort, M. Soriano-Navarro, J. M. Garcia-Verdugo, and A. Izeta, “Production of Human Tissue-Engineered Skin Trilayer on a Plasma-Based Hypodermis,” Journal of Tissue Engineering and Regenerative Medicine, 2012. doi:10.1002/term.548
[58] I. Beloqui, “Breast Reconstruction Using Stem Cells and Engineered Biomaterials,” Recent Patents in Regenera- tive Medicine, Vol. 2, 2012, pp. 114-124.
[59] A. Wilson, P. E. Butler and A. M. Seifalian, “Adipose- Derived Stem Cells for Clinical Applications: A Review,” Cell Proliferation, Vol. 44, No. 1, 2011, pp. 86-98. doi:10.1111/j.1365-2184.2010.00736.x
[60] B. M. Strem, K. C. Hicok, M. Zhu, I. Wulur, Z. Alfonso, R. E. Schreiber, J. K. Fraser and M. H. Hedrick, “Multipotential Differentiation of Adipose Tissue-Derived Stem Cells,” The Keio Journal of Medicine, Vol. 54, No. 3, 2005, pp. 132-141. doi:10.2302/kjm.54.132
[61] I. Cárcamo-Orive, A. Gaztelumendi, J. Delgado, N. Tejados, A. Dorronsoro, J. Fernandez-Rueda, D. J. Pennington and C. Trigueros, “Regulation of Human Bone Marrow Stromal Cell Proliferation and differentiation Ca- pacity by Glucocorticoid Receptor and AP-1 Crosstalk,” Journal of Bone and Mineral Research, Vol. 25, No. 10, 2010, pp. 2115-2125. doi:10.1002/jbmr.120
[62] I. Carcamo-Orive, N. Tejados, J. Delgado, A. Gaztelumendi, D. Otaegui, V. Lang and C. Trigueros, “ERK2 Protein Regulates the Proliferation of Human Mesenchymal Stem Cells without Affecting Their Mobilization and Differentiation Potential,” Experimental Cell Research, Vol. 314, No. 8, 2008, pp. 1777-1788. doi:10.1016/j.yexcr.2008.01.020
[63] M. Konno, T. S. Hamazaki, S. Fukuda, M. Tokuhara, H. Uchiyama, H. Okazawa, H. Okochi and M. Asashima, “Efficiently Differentiating Vascular Endothelial Cells from Adipose Tissue-Derived Mesenchymal Stem Cells in Serum-Free Culture,” Biochemical and Biophysical Re- search Communications, Vol. 400, No. 4, 2010, pp. 461- 465. doi:10.1016/j.bbrc.2010.08.029
[64] E. Lombardo, O. DelaRosa, P. Manche?o-Corvo, R. Menta, C. Ramírez and D. Büscher, “Toll-Like Receptor- Mediated Signaling in Human Adipose-Derived Stem Cells: Implications for Immunogenicity and Immunosuppressive Potential,” Tissue Engineering Part A, Vol. 15, No. 7, 2009, pp. 1579-1589. doi:10.1089/ten.tea.2008.0340
[65] C. Nakanishi, N. Nagaya, S. Ohnishi, K. Yamahara, S. Takabatake, T. Konno, K. Hayashi, M. A. Kawashiri, T. Tsubokawa and M. Yamagishi, “Gene and Protein Expression Analysis of Mesenchymal Stem Cells Derived From Rat Adipose Tissue and Bone Marrow,” Circula- tion Journal, Vol. 75, No. 9, 2011, pp. 2260-2268. doi:10.1253/circj.CJ-11-0246
[66] G. E. Kilroy, S. J. Foster, X. Wu, J. Ruiz, S. Sherwood, A. Heifetz, J. W. Ludlow, D. M. Stricker, S. Potiny, P. Green, Y. D. Halvorsen, B. Cheatham, R. W. Storms and J. M. Gimble, “Cytokine Profile of Human Adipose- Derived Stem Cells: Expression of Angiogenic, Hematopoietic, and Pro-Inflammatory Factors,” Journal of Cellular Physiology, Vol. 212, No. 3, 2007, pp. 702-709. doi:10.1002/jcp.21068
[67] B. Labbé, G. Marceau-Fortier and J. Fradette, “Cell Sheet Technology for Tissue Engineering: The Self-Assembly Approach Using Adipose-Derived Stromal Cells,” Meth- ods in Molecular Biology, Vol. 702, No. 4, 2011, pp. 429- 441.
[68] M. Vallee, J. F. Cote and J. Fradette, “Adipose-Tissue Engineering: Taking Advantage of the Properties of Human Adipose-Derived Stem/Stromal Cells,” Pathologie Biologie, Vol. 57, No. 4, 2009, pp. 309-317. doi:10.1016/j.patbio.2008.04.010
[69] M. Vermette, V. Trottier, V. Ménard, L. Saint-Pierre, A. Roy and J. Fradette, “Production of a New Tissue-Engi- neered Adipose Substitute from Human Adipose-Derived Stromal Cells,” Biomaterials, Vol. 28, No. 18, 2007, pp. 2850-2860. doi:10.1016/j.biomaterials.2007.02.030
[70] L. Hong, I. A. Peptan, A. Colpan and J. L. Daw, “Adipose Tissue Engineering by Human Adipose-Derived Stromal Cells,” Cells Tissues Organs, Vol. 183, No. 3, 2006, pp. 133-140. doi:10.1159/000095987
[71] S. D. Lin, S. H. Huang, Y. N. Lin, S. H. Wu, H. W. Chang, T. M. Lin, C. Y. Chai and C. S. Lai, “Engineering Adipose Tissue from Uncultured Human Adipose Stromal Vascular Fraction on Collagen Matrix and Gelatin Sponge Scaffolds,” Tissue Engineering Part A, Vol. 17, No. 11-12, 2011, pp. 1489-1498. doi:10.1089/ten.tea.2010.0688
[72] J. R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J. M. Gimble and D. L. Kaplan, “Engineering Adipose-Like Tissue in Vitro and in Vivo Utilizing Human Bone Marrow and Adipose-Derived Mesenchymal Stem Cells with Silk Fibroin 3D Scaffolds,” Biomaterials, Vol. 28, No. 35, 2007, pp. 5280-5290. doi:10.1016/j.biomaterials.2007.08.017
[73] M. Radisic, H. Park, F. Chen, J. E. Salazar-Lazzaro, Y. Wang, R. Dennis, R. Langer, L. E. Freed and G. Vunjak- Novakovic, “Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds,” Tissue Engineering, Vol. 12, No. 8, 2006, pp. 2077-2091. doi:10.1089/ten.2006.12.2077
[74] M. Radisic, J. Malda, E. Epping, W. Geng, R. Langer and G. Vunjak-Novakovic, “Oxygen Gradients Correlate with Cell Density and Cell Viability in Engineered Cardiac Tissue,” Biotechnology and Bioengineering, Vol. 93, No. 2, 2006, pp. 332-343. doi:10.1002/bit.20722
[75] E. C. Novosel, C. Kleinhans and P. J. Kluger, “Vascularization Is the Key Challenge in Tissue Engineering,” Advanced Drug Delivery Reviews, Vol. 63, No. 4-5, 2011, pp. 300-311. doi:10.1016/j.addr.2011.03.004
[76] J. X. Sun, Y. L. Wang, Z. Y. Qian and C. B. Hu, “An Approach to Architecture 3D Scaffold with Interconnective Microchannel Networks Inducing Angiogenesis for Tissue Engineering,” Journal of Materials Science: Ma- terials in Medicine, Vol. 22, No. 11, 2011, pp. 2565-2571. doi:10.1007/s10856-011-4426-0
[77] Z. Lokmic and G. M. Mitchell, “Engineering the Microcirculation,” Tissue Engineering Part B: Reviews, Vol. 14, No. 1, 2008, pp. 87-103. doi:10.1089/teb.2007.0299
[78] V. Hudon, F. Berthod, A. F. Black, O. Damour, L. Germain and F. A. Auger, “A Tissue-Engineered Endothelialized Dermis to Study the Modulation of Angiogenic and Angiostatic Molecules on Capillary-Like Tube Formation in Vitro,” British Journal of Dermatology, Vol. 148, No. 6, 2003, pp. 1094-1104. doi:10.1046/j.1365-2133.2003.05298.x
[79] F. Verseijden, S. J. Posthumus-van Sluijs, E. Farrell, J. W. van Neck, S. E. R. Hovius, S. O. P. Hofer and G. J. V. M. van Osch, “Prevascular Structures Promote Vasculariza- tion in engineered Human Adipose Tissue Constructs upon Implantation,” Cell Transplantation, Vol. 19, No. 8, 2010, pp. 1007-1020. doi:10.3727/096368910X492571
[80] F. Verseijden, S. J. Posthumus-van Sluijs, P. Pavljasevic, S. O. P. Hofer, G. J. V. M. van Osch and E. Farrell, “Adult Human Bone Marrow- and Adipose Tissue-De- rived Stromal Cells Support the Formation of Prevascular-Like Structures from Endothelial Cells in vitro,” Tissue Engineering Part A, Vol. 16, No. 1, 2010, pp. 101- 114. doi:10.1089/ten.tea.2009.0106
[81] L. J. Hutley, A. C. Herington, W. Shurety, C. Cheung, D. A. Vesey, D. P. Cameron and J. B. Prins, “Human Adipose Tissue Endothelial Cells Promote Preadipocyte Proliferation,” American Journal of Physiology—Endocri- nology and Metabolism, Vol. 281, No. 5, 2001, pp. E1037- E1044.
[82] J. Borges, M. C. Müller, A. Momeni, G. B. Stark and N. Torio-Padron, “In vitro Analysis of the Interactions between Preadipocytes and Endothelial Cells in a 3D Fibrin Matrix,” Minimally Invasive Therapy and Allied Technologies, Vol. 16, No. 3, 2007, pp. 141-148. doi:10.1080/13645700600935398
[83] D. E. Dobson, A. Kambe, E. Block, T. Dion, H. Lu, J. J. Castellot, Jr. and B. M. Spiegelman, “1-Butyryl-Glycerol: A Novel Angiogenesis Factor Secreted by Differentiating Adipocytes,” Cell, Vol. 61, No. 2, 1990, pp. 223-230. doi:10.1016/0092-8674(90)90803-M
[84] J. J. Castellot Jr., M. J. Karnovsky and B. M. Spiegelman, “Differentiation-Dependent Stimulation of Neovascularization and Endothelial Cell Chemotaxis by 3T3 Adipocytes,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 79, No. 18, 1982, pp. 5597-5601. doi:10.1073/pnas.79.18.5597
[85] J. H. Kang, J. M. Gimble and D. L. Kaplan, “In Vitro 3D Model for Human Vascularized Adipose Tissue,” Tissue Engineering Part A, Vol. 15, No. 8, 2009, pp. 2227-2236. doi:10.1089/ten.tea.2008.0469
[86] L. Flynn and K. A. Woodhouse, “Adipose Tissue Engineering with Cells in Engineered Matrices,” Organogenesis, Vol. 4, No. 4, 2008, pp. 228-235. doi:10.4161/org.4.4.7082
[87] Y. Itoi, M. Takatori, H. Hyakusoku and H. Mizuno, “Comparison of Readily Available Scaffolds for Adipose Tissue Engineering Using Adipose-Derived Stem Cells,” Journal of Plastic, Reconstructive & Aesthetic Surgery, Vol. 63, No. 5, 2010, pp. 858-864. doi:10.1016/j.bjps.2009.01.069
[88] H. Mizuno, Y. Itoi, S. Kawahara, R. Ogawa, S. Akaishi, and H. Hyakusoku, “In Vivo Adipose Tissue Regeneration by Adipose-Derived Stromal Cells Isolated from GFP Transgenic Mice,” Cells Tissues Organs, Vol. 187, No. 3, 2008, pp. 177-185. doi:10.1159/000110805
[89] S.-W. Cho, I. Kim, S.-H. Kim, J.-W. Rhie, C.-Y. Choi and B.-S. Kim, “Enhancement of Adipose Tissue Formation by Implantation of Adipogenic-Differentiated Preadi- pocytes,” Biochemical and Biophysical Research Com- munications, Vol. 345, No. 2, 2006, pp. 588-594. doi:10.1016/j.bbrc.2006.04.089
[90] M. A. Scott, V. T. Nguyen, B. Levi and A. W. James, “Current Methods of Adipogenic Differentiation of Mes- enchymal Stem Cells,” Stem Cells and Development, Vol. 20, No. 10, 2011, pp. 1793-1804. doi:10.1089/scd.2011.0040
[91] T. Tammela, B. Enholm, K. Alitalo and K. Paavonen, “The Biology of Vascular Endothelial Growth Factors,” Cardiovascular Research, Vol. 65, No. 3, 2005, pp. 550- 563. doi:10.1016/j.cardiores.2004.12.002
[92] G. J. Hausman and R. L. Richardson, “Adipose Tissue Angiogenesis,” Journal of Animal Science, Vol. 82, No. 3, 2004, pp. 925-934.
[93] L. Gautron and J. K. Elmquist, “Sixteen Years and Counting: An Update on Leptin in Energy Balance,” The Jour- nal of Clinical Investigation, Vol. 121, No. 6, 2011, pp. 2087-2093. doi:10.1172/JCI45888
[94] T. Ezure and S. Amano, “Adiponectin and Leptin Up- Regulate Extracellular Matrix Production by Dermal Fi- broblasts,” Biofactors, Vol. 31, No. 3-4, 2007, pp. 229- 236. doi:10.1002/biof.5520310310
[95] B. Poeggeler, C. Schulz, M. A. Pappolla, E. Bodo, S. Tiede, H. Lehnert and R. Paus, “Leptin and the Skin: A New Frontier,” Experimental Dermatology, Vol. 19, No. 1, 2010, pp. 12-18. doi:10.1111/j.1600-0625.2009.00930.x
[96] B. Stallmeyer, H. K?mpfer, M. Podda, R. Kaufmann, J. Pfeilschifter and S. Frank, “A Novel Keratinocyte Mitogen: Regulation of Leptin and Its Functional Receptor in Skin Repair,” Journal of Investigative Dermatology, Vol. 117, No. 1, 2001, pp. 98-105. doi:10.1046/j.0022-202x.2001.01387.x
[97] J. Klein, P. A. Permana, M. Owecki, G. N. Chaldakov, M. Bohm, G. Hausman, C. M. Lapiere, P. Atanassova, J. Sowinski, M. Fasshauer, D. B. Hausman, E. Maquoi, A. B. Tonchev, V. N. Peneva, K. P. Vlachanov, M. Fiore, L. Aloe, A. Slominski, C. L. Reardon, T. J. Ryan, C. M. Pond and T. J. Ryan, “What Are Subcutaneous Adipocytes Really Good for?” Experimental Dermatology, Vol. 16, No. 1, 2007, pp. 45-70.
[98] B. Wang, I. S. Wood and P. Trayhurn, “Hypoxia Induces Leptin Gene Expression and Secretion in Human Preadipocytes: Differential Effects of Hypoxia on Adipokine Expression by Preadipocytes,” Journal of Endocrinology, Vol. 198, No. 1, 2008, pp. 127-134. doi:10.1677/JOE-08-0156
[99] A. Bouloumié, H. C. Drexler, M. Lafontan and R. Busse, “Leptin, the Product of Ob Gene, Promotes Angiogenesis,” Circulation Research, Vol. 83, No. 10, 1998, pp. 1059-1066. doi:10.1161/01.RES.83.10.1059
[100] R. Cao, E. Brakenhielm, C. Wahlestedt, J. Thyberg and Y. Cao, “Leptin Induces Vascular Permeability and Syner- gistically Stimulates Angiogenesis with FGF-2 and VEGF,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 11, 2001, pp. 6390-6395. doi:10.1073/pnas.101564798
[101] I. Liapaki, S. Anagnostoulis, A. Karayiannakis, D. Korkolis, M. Labropoulou, A. Matarasso and C. Simopoulos, “Burn Wound Angiogenesis Is Increased by Exogenously Administered Recombinant Leptin in Rats,” Acta Cirurgica Brasileira, Vol. 23, No. 2, 2008, pp. 118- 124. doi:10.1590/S0102-86502008000200002
[102] I. E. Liapakis, S. Anagnostoulis, A. J. Karayiannakis, D. P. Korkolis, M. Lambropoulou, E. Arnaud and C. E. Simopoulos, “Recombinant Leptin Administration Improves Early Angiogenesis in Full-Thickness Skin Flaps: An Experimental Study,” In Vivo, Vol. 22, No. 2, 2008, pp. 247-252.
[103] S. Frank, B. Stallmeyer, H. Kampfer, N. Kolb and J. Pfeilschifter, “Leptin Enhances Wound Re-Epithelialization and Constitutes a Direct Function of Leptin in Skin Repair,” The Journal of Clinical Investigation, Vol. 106, No. 4, 2000, pp. 501-509. doi:10.1172/JCI9148
[104] H. Y. Park, H. M. Kwon, H. J. Lim, B. K. Hong, J. Y. Lee, B. E. Park, Y. Jang, S. Y. Cho and H. S. Kim, “Potential Role of Leptin in Angiogenesis: Leptin Induces Endothelial Cell Proliferation and Expression of Matrix Metalloproteinases in vivo and in vitro,” Experimental & Molecular Medicine, Vol. 33, No. 2, 2001, pp. 95-102.
[105] N. Kawaguchi, K. Toriyama, E. Nicodemou-Lena, K. Inou, S. Torii and Y. Kitagawa, “De Novo Adipogenesis in Mice at the Site of Injection of Basement Membrane and Basic Fibroblast Growth Factor,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 3, 1998, pp. 1062-1066. doi:10.1073/pnas.95.3.1062
[106] Y. Kimura, M. Ozeki, T. Inamoto and Y. Tabata, “Time Course of de Novo Adipogenesis in Matrigel by Gelatin Microspheres Incorporating Basic Fibroblast Growth Factor,” Tissue Engineering, Vol. 8, No. 4, 2002, pp. 603- 613. doi:10.1089/107632702760240526
[107] Y. Kimura, M. Ozeki, T. Inamoto and Y. Tabata, “Adipose Tissue Engineering Based on Human Preadipocytes Combined with Gelatin Microspheres Containing Basic Fibroblast Growth Factor,” Biomaterials, Vol. 24, No. 14, 2003, pp. 2513-2521. doi:10.1016/S0142-9612(03)00049-8
[108] Y. Kimura, W. Tsuji, H. Yamashiro, M. Toi, T. Inamoto and Y. Tabata, “In Situ Adipogenesis in Fat Tissue Augmented by Collagen Scaffold with Gelatin Microspheres Containing Basic Fibroblast Growth Factor,” Journal of Tissue Engineering and Regenerative Medicine, Vol. 4, No. 1, 2010, pp. 55-61.
[109] M. Neubauer, M. Hacker, P. Bauer-Kreisel, B. Weiser, C. Fischbach, M. B. Schulz, A. Goepferich and T. Blunk, “Adipose Tissue Engineering Based on Mesenchymal Stem Cells and Basic Fibroblast Growth Factor in Vitro,” Tissue Engineering, Vol. 11, No. 11-12, 2005, pp. 1840- 1851. doi:10.1089/ten.2005.11.1840
[110] Y. Tabata, M. Miyao, T. Inamoto, T. Ishii, Y. Hirano, Y. Yamaoki and Y. Ikada, “De Novo Formation of Adipose Tissue by Controlled Release of Basic Fibroblast Growth Factor,” Tissue Engineering, Vol. 6, No. 3, 2000, pp. 279- 289. doi:10.1089/10763270050044452
[111] M. S. Pepper, N. Ferrara, L. Orci and R. Montesano, “Potent Synergism between Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor in the Induction of Angiogenesis in Vitro,” Biochemical and Biophysical Research Communications, Vol. 189, No. 2, 1992, pp. 824-831. doi:10.1016/0006-291X(92)92277-5
[112] C. Lieu, J. Heymach, M. Overman, H. Tran and S. Kopetz, “Beyond VEGF: Inhibition of the Fibroblast Growth Factor Pathway and Antiangiogenesis,” Clinical Cancer Research, Vol. 17, No. 19, 2011, pp. 6130-6139. doi:10.1158/1078-0432.CCR-11-0659
[113] A. Arkudas, J. Tjiawi, O. Bleiziffer, L. Grabinger, E. Polykandriotis, J. P. Beier, M. Sturzl, R. E. Horch and U. Kneser, “Fibrin Gel-Immobilized VEGF and bFGF Efficiently Stimulate Angiogenesis in the AV Loop Model,” Molecular Medicine, Vol. 13, No. 9-10, 2007, pp. 480- 487. doi:10.2119/2007-00057.Arkudas
[114] R. R. Chen, E. A. Silva, W. W. Yuen, A. A. Brock, C. Fischbach, A. S. Lin, R. E. Guldberg and D. J. Mooney, “Integrated Approach to Designing Growth Factor Deliv- ery Systems,” The FASEB Journal, Vol. 21, No. 14, 2007, pp. 3896-3903. doi:10.1096/fj.06-7873com
[115] A. des Rieux, B. Ucakar, B. P. Mupendwa, D. Colau, O. Feron, P. Carmeliet and V. Préat, “3D Systems Delivering VEGF to Promote Angiogenesis for Tissue Engineering,” Journal of Controlled Release, Vol. 150, No. 3, 2011, pp. 272-278. doi:10.1016/j.jconrel.2010.11.028
[116] J. S. Golub, Y. T. Kim, C. L. Duvall, R. V. Bellamkonda, D. Gupta, A. S. Lin, D. Weiss, W. Robert Taylor and R. E. Guldberg, “Sustained VEGF Delivery via PLGA Nanoparticles Promotes Vascular Growth,” American Journal of Physiology—Heart and Circulatory Physiology, Vol. 298, No. 6, 2010, pp. H1959-H1965. doi:10.1152/ajpheart.00199.2009
[117] C. R. Ozawa, A. Banfi, N. L. Glazer, G. Thurston, M. L. Springer, P. E. Kraft, D. M. McDonald and H. M. Blau, “Microenvironmental VEGF Concentration, Not Total Dose, Determines a Threshold between Normal and Aberrant Angiogenesis,” The Journal of Clinical Investiga- tion, Vol. 113, No. 4, 2004, pp. 516-527.
[118] E. A. Silva and D. J. Mooney, “Spatiotemporal Control of Vascular Endothelial Growth Factor Delivery from Injectable Hydrogels Enhances Angiogenesis,” Journal of Thrombosis and Haemostasis, Vol. 5, No. 3, 2007, pp. 590-598. doi:10.1111/j.1538-7836.2007.02386.x
[119] E. A. Silva and D. J. Mooney, “Effects of VEGF Temporal and Spatial Presentation on Angiogenesis,” Biomaterials, Vol. 31, No. 6, 2010, pp. 1235-1241. doi:10.1016/j.biomaterials.2009.10.052
[120] K. Bozaoglu, J. E. Curran, C. J. Stocker, M. S. Zaibi, D. Segal, N. Konstantopoulos, S. Morrison, M. Carless, T. D. Dyer, S. A. Cole, H. H. Goring, E. K. Moses, K. Walder, M. A. Cawthorne, J. Blangero and J.B. Jowett, “Chemerin, a Novel Adipokine in the Regulation of Angiogenesis,” The Journal of Clinical Endocrinology & Metabolism, Vol. 95, No. 5, 2010, pp. 2476-2485. doi:10.1210/jc.2010-0042
[121] O. Kunduzova, N. Alet, N. Delesque-Touchard, L. Millet, I. Castan-Laurell, C. Muller, C. Dray, P. Schaeffer, J. P. Herault, P. Savi, F. Bono and P. Valet, “Apelin/APJ Signaling System: A Potential Link between Adipose Tissue and Endothelial Angiogenic Processes,” The FASEB Journal, Vol. 22, No. 12, 2008, pp. 4146-4153. doi:10.1096/fj.07-104018
[122] S. Uriel, E. M. Brey, and H. P. Greisler, “Sustained Low Levels of Fibroblast Growth Factor-1 Promote Persistent Microvascular Network Formation,” The American Journal of Surgery, Vol. 192, No. 5, 2006, pp. 604-609. doi:10.1016/j.amjsurg.2006.08.012
[123] R. A. Marklein and J. A. Burdick, “Controlling Stem Cell Fate with Material Design,” Advanced Materials, Vol. 22, No. 2, 2010, pp. 175-189. doi:10.1002/adma.200901055
[124] C. Theoret, “Tissue Engineering in Wound Repair: The Three ‘R’s—Repair, Replace, Regenerate,” Veterinary Surgery, Vol. 38, No. 8, 2009, pp. 905-913. doi:10.1111/j.1532-950X.2009.00585.x
[125] L. Tian and S. C. George, “Biomaterials to Prevascularize Engineered Tissues,” Journal of Cardiovascular Translational Research, Vol. 4, No. 5, 2011, pp. 685-698. doi:10.1007/s12265-011-9301-3
[126] K. Hemmrich, D. von Heimburg, R. Rendchen, C. Di Bartolo, E. Milella and N. Pallua, “Implantation of Preadipo- cyte-Loaded Hyaluronic Acid-Based Scaffolds into Nude Mice to Evaluate Potential for Soft Tissue Engineering,” Biomaterials, Vol. 26, No. 34, 2005, pp. 7025-7037. doi:10.1016/j.biomaterials.2005.04.065
[127] T. A. Ahmed, E. V. Dare and M. Hincke, “Fibrin: A Versatile Scaffold for Tissue Engineering Applications,” Tis- sue Engineering Part B: Reviews, Vol. 14, No. 2, 2008, pp. 199-215. doi:10.1089/ten.teb.2007.0435
[128] D. von Heimburg, S. Zachariah, I. Heschel, H. Kuhling, H. Schoof, B. Hafemann and N. Pallua, “Human Preadipocytes Seeded on Freeze-Dried Collagen Scaffolds Investigated in vitro and in vivo,” Biomaterials, Vol. 22, No. 5, 2001, pp. 429-38. doi:10.1016/S0142-9612(00)00186-1
[129] A. M. Altman, Y. S. Yan, N. Matthias, X. W. Bai, C. Rios, A. B. Mathur, Y.-H. Song and E. U. Alt, “IFATS Collection: Human Adipose-Derived Stem Cells Seeded on a Silk Fibroin-Chitosan Scaffold Enhance Wound Repair in a Murine Soft Tissue Injury Model,” Stem Cells, Vol. 27, No. 1, 2009, pp. 250-258. doi:10.1634/stemcells.2008-0178
[130] A. Loebsack, K. Greene, S. Wyatt, C. Culberson, C. Austin, R. Beiler, W. Roland, P. Eiselt, J. Rowley, K. Burg, D. Mooney, W. Holder and C. Halberstadt, “In vivo Characterization of a Porous Hydrogel Material for Use as a Tissue Bulking Agent,” Journal of Biomedical Materials Research, Vol. 57, No. 4, 2001, pp. 575-581. doi:10.1002/1097-4636(20011215)57:4<575::AID-JBM1204>3.0.CO;2-9
[131] L. Flynn, J. L. Semple and K. A. Woodhouse, “Decellularized Placental Matrices for Adipose Tissue Engineering,” Journal of Biomedical Materials Research Part A, Vol. 79A, No. 2, 2006, pp. 359-369. doi:10.1002/jbm.a.30762
[132] B. N. Brown, J. M. Freund, L. Han, J. P. Rubin, J. E. Reing, E. M. Jeffries, M. T. Wolf, S. Tottey, C. A. Barnes, B. D. Ratner and S. F. Badylak, “Comparison of Three Methods for the Derivation of a Biologic Scaffold Composed of Adipose Tissue Extracellular Matrix,” Tissue Engineering Part C: Methods, Vol. 17, No. 4, 2011, pp. 411-421. doi:10.1089/ten.tec.2010.0342
[133] J. S. Choi, B. S. Kim, J. Y. Kim, J. D. Kim, Y. C. Choi, H.-J. Yang, K. Park, H. Y. Lee and Y. W. Cho, “Decellu- larized Extracellular Matrix Derived from Human Adipose Tissue as a Potential Scaffold for Allograft Tissue Engineering,” Journal of Biomedical Materials Research Part A, Vol. 97A, No. 3, 2011, pp. 292-299. doi:10.1002/jbm.a.33056
[134] L. E. Flynn, “The Use of Decellularized Adipose Tissue to Provide an Inductive Microenvironment for the Adipogenic Differentiation of Human Adipose-Derived Stem Cells,” Biomaterials, Vol. 31, No. 17, 2010, pp. 4715- 4724. doi:10.1016/j.biomaterials.2010.02.046
[135] B. S. Kim, J. S. Choi, J. D. Kim, Y. C. Choi and Y. W. Cho, “Recellularization of Decellularized Human Adipose-Tissue-Derived Extracellular Matrix Sheets with Other Human Cell Types,” Cell Tissue Research, 2012.
[136] H. Orbay, Y. Takami, H. Hyakusoku and H. Mizuno, “Acellular Dermal Matrix Seeded with Adipose-Derived Stem Cells as a Subcutaneous Implant,” Aesthetic Plastic Surgery, Vol. 35, No. 5, 2011, pp. 756-763. doi:10.1007/s00266-011-9683-2
[137] N. Davidenko, J. J. Campbell, E. S. Thian, C. J. Watson, and R.E. Cameron, “Collagen-Hyaluronic Acid Scaffolds for Adipose Tissue Engineering,” Acta Biomaterialia, Vol. 6, No. 10, 2010, pp. 3957-3968. doi:10.1016/j.actbio.2010.05.005
[138] S. Huang and X. Fu, “Naturally Derived Materials-Based Cell and Drug Delivery Systems in Skin Regeneration,” Journal of Controlled Release, Vol. 142, No. 2, 2010, pp. 149-159. doi:10.1016/j.jconrel.2009.10.018
[139] L. Girandon, N. Kregar-Velikonja, K. Bozikov and A. Barlic, “In vitro Models for Adipose Tissue Engineering with Adipose-Derived Stem Cells Using Different Scaffolds of Natural Origin,” Folia Biologica (Praha), Vol. 57, No. 2, 2011, pp. 47-56.
[140] F. P. Brandl, A. K. Seitz, J. K. Tessmar, T. Blunk and A. M. Gopferich, “Enzymatically Degradable Poly (Ethylene Glycol) Based Hydrogels for Adipose Tissue Engineering,” Biomaterials, Vol. 31, No. 14, 2010, pp. 3957-3966. doi:10.1016/j.biomaterials.2010.01.128
[141] A. Alhadlaq, M. Tang and J. J. Mao, “Engineered Adipose Tissue from Human Mesenchymal Stem Cells Maintains Predefined Shape and Dimension: Implications in Soft Tissue Augmentation and Reconstruction,” Tissue Engineering, Vol. 11, No. 3-4, 2005, pp. 556-566. doi:10.1089/ten.2005.11.556
[142] J.G. Kral and D. L. Crandall, “Development of a Human Adipocyte Synthetic Polymer Scaffold,” Plastic and Re- constructive Surgery, Vol. 104, No. 6, 1999, pp. 1732- 1738. doi:10.1097/00006534-199911000-00018
[143] X. Kang, Y. Xie, and D.A. Kniss, “Adipose Tissue Model Using Three-Dimensional Cultivation of Preadipocytes Seeded onto Fibrous Polymer Scaffolds,” Tissue Engi- neering, Vol. 11, No. 3-4, 2005, pp. 458-468. doi:10.1089/ten.2005.11.458
[144] C. Fischbach, T. Spruss, B. Weiser, M. Neubauer, C. Becker, M. Hacker, A. Gopferich and T. Blunk, “Generation of Mature Fat Pads in vitro and in vivo Utilizing 3D Long-Term Culture of 3T3-L1 Preadipocytes,” Experi- mental Cell Research, Vol. 300, No. 1, 2004, pp. 54-64. doi:10.1016/j.yexcr.2004.05.036
[145] H. S. Yang, J. Shin, S. H. Bhang, J.-Y. Shin, J. Park, G.-I. Im, C.-S. Kim and B.-S. Kim, “Enhanced Skin Wound Healing by a Sustained Release of Growth Factors Contained in Platelet-Rich Plasma,” Experimental and Mo- lecular Medicine, Vol. 43, No. 11, 2011, pp. 622-629. doi:10.3858/emm.2011.43.11.070
[146] G. Tae, M. Scatena, P. S. Stayton and A. S. Hoffman, “PEG-cross-Linked Heparin Is an Affinity Hydrogel for Sustained Release of Vascular Endothelial Growth Factor,” Journal of Biomaterials Science, Polymer Edition, Vol. 17, No. 1-2, 2006, pp. 187-197. doi:10.1163/156856206774879090
[147] L. W. Chow, R. Bitton, M. J. Webber, D. Carvajal, K. R. Shull, A. K. Sharma and S. I. Stupp, “A Bioactive Self- Assembled Membrane to Promote Angiogenesis,” Biomaterials, Vol. 32, No. 6, 2011, pp. 1574-1582. doi:10.1016/j.biomaterials.2010.10.048
[148] M. J. Webber, J. Tongers, C. J. Newcomb, K. T. Marquardt, J. Bauersachs, D. W. Losordo and S. I. Stupp, “Su- pramolecular Nanostructures that Mimic VEGF as a Strategy for Ischemic Tissue Repair,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, No. 33, 2011, pp. 13438-13443. doi:10.1073/pnas.1016546108
[149] H. Cui, M. J. Webber and S. I. Stupp, “Self-Assembly of Peptide Amphiphiles: From Molecules to Nanostructures to Biomaterials,” Peptide Science, Vol. 94, No. 1, 2010, pp. 1-18. doi:10.1002/bip.21328
[150] R. L. Dahlin, F. K. Kasper and A. G. Mikos, “Polymeric Nanofibers in Tissue Engineering,” Tissue Engineering Part B: Reviews, Vol. 17, No. 5, 2011, pp. 349-364. doi:10.1089/ten.teb.2011.0238
[151] M. I. Santos, K. Tuzlakoglu, S. Fuchs, M. E. Gomes, K. Peters, R .E. Unger, E. Piskin, R. L. Reis and C. J. Kirkpatrick, “Endothelial Cell Colonization and Angiogenic Potential of Combined Nano- and Micro-Fibrous Scaffolds for Bone Tissue Engineering,” Biomaterials, Vol. 29, No. 32, 2008, pp. 4306-4313. doi:10.1016/j.biomaterials.2008.07.033
[152] M. J. Webber, J. Tongers, M. A. Renault, J. G. Roncalli, D. W. Losordo and S. I. Stupp, “Development of Bioactive Peptide Amphiphiles for Therapeutic Cell Delivery,” Acta Biomaterialia, Vol. 6, No. 1, 2010, pp. 3-11. doi:10.1016/j.actbio.2009.07.031
[153] X. Chen, A. S. Aledia, S. A. Popson, L. Him, C. C. Hughes and S. C. George, “Rapid Anastomosis of Endothelial Progenitor Cell-Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts,” Tissue Engineering Part A, Vol. 16, No. 2, 2010, pp. 585-594. doi:10.1089/ten.tea.2009.0491
[154] C. Deng, P. Zhang, B. Vulesevic, D. Kuraitis, F. Li, A. F. Yang, M. Griffith, M. Ruel and E. J. Suuronen, “A Collagen-Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis,” Tissue Engineering Part A, Vol. 16, No. 10, 2010, pp. 3099-3109. doi:10.1089/ten.tea.2009.0504
[155] I. Montano, C. Schiestl, J. Schneider, L. Pontiggia, J. Luginbuhl, T. Biedermann, S. Bottcher-Haberzeth, E. Braziulis, M. Meuli and E. Reichmann, “Formation of Human Capillaries in Vitro: The Engineering of Prevascularized Matrices,” Tissue Engineering Part A, Vol. 16, No. 1, 2010, pp. 269-282. doi:10.1089/ten.tea.2008.0550
[156] R. E. Unger, S. Ghanaati, C. Orth, A. Sartoris, M. Barbeck, S. Halstenberg, A. Motta, C. Migliaresi and C. J. Kirkpatrick, “The Rapid Anastomosis between Prevascularized Networks on Silk Fibroin Scaffolds Generated in vitro with Cocultures of Human Microvascular Endothelial and Osteoblast Cells and the Host Vasculature,” Biomaterials, Vol. 31, No. 27, 2010, pp. 6959-6967. doi:10.1016/j.biomaterials.2010.05.057
[157] T. Kaully, K. Kaufman-Francis, A. Lesman and S. Levenberg, “Vascularization—The Conduit to Viable Engineered Tissues,” Tissue Engineering Part B: Reviews, Vol. 15, No. 2, 2009, pp. 159-169. doi:10.1089/ten.teb.2008.0193
[158] A. Breen, T. O'Brien and A. Pandit, “Fibrin as a Delivery System for Therapeutic Drugs and Biomolecules,” Tissue Engineering Part B: Reviews, Vol. 15, No. 2, 2009, pp. 201-214. doi:10.1089/ten.teb.2008.0527
[159] E. Kniazeva, S. Kachgal and A. J. Putnam, “Effects of Extracellular Matrix Density and Mesenchymal Stem Cells on Neovascularization in Vivo,” Tissue Engineering Part A, Vol. 17, No. 7-8, 2011, pp. 905-914. doi:10.1089/ten.tea.2010.0275
[160] E. A. Phelps, N. Landazuri, P. M. Thule, W. R. Taylor and A. J. Garcia, “Bioartificial Matrices for Therapeutic Vascularization,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 8, 2010, pp. 3323-3328. doi:10.1073/pnas.0905447107
[161] M. W. Laschke, M. Rücker, G. Jensen, C. Carvalho, R. Mulhaupt, N. C. Gellrich and M. D. Menger, “Incorporation of Growth Factor Containing Matrigel Promotes Vascularization of Porous PLGA Scaffolds,” Journal of Biomedical Materials Research Part A, Vol. 85, No. 2, 2008, pp. 397-407. doi:10.1002/jbm.a.31503
[162] M. T. Conconi, F. Ghezzo, M. Dettin, L. Urbani, C. Grandi, D. Guidolin, B. Nico, C. Di Bello, D. Ribatti and P. P. Parnigotto, “Effects on in vitro and in vivo Angiogenesis Induced by Small Peptides Carrying Adhesion Sequences,” Journal of Peptide Science, Vol. 16, No. 7, 2010, pp. 349-357.
[163] M. Biondi, F. Ungaro, F. Quaglia and P. A. Netti, “Controlled Drug Delivery in Tissue Engineering,” Advanced Drug Delivery Reviews, Vol. 60, No. 2, 2008, pp. 229- 242. doi:10.1016/j.addr.2007.08.038
[164] J. K. Tessmar and A. M. Gopferich, “Matrices and Scaffolds for Protein Delivery in Tissue Engineering,” Ad- vanced Drug Delivery Reviews, Vol. 59, No. 4-5, 2007, pp. 274-291. doi:10.1016/j.addr.2007.03.020
[165] J. D. Kretlow, L. Klouda and A. G. Mikos, “Injectable Matrices and Scaffolds for Drug Delivery in Tissue Engineering,” Advanced Drug Delivery Reviews, Vol. 59, No. 4-5, 2007, pp. 263-273. doi:10.1016/j.addr.2007.03.013
[166] L. Requena, C. Requena, L. Christensen, U. S. Zimmermann, H. Kutzner and L. Cerroni, “Adverse Reactions to In- jectable Soft Tissue Fillers,” Journal of the American Academy of Dermatology, Vol. 64, No. 1, 2011, pp. 1-34. doi:10.1016/j.jaad.2010.02.064
[167] G. Lemperle, V. Morhenn and U. Charrier, “Human Histology and Persistence of Various Injectable Filler Substances for Soft Tissue Augmentation,” Aesthetic Plastic Surgery, Vol. 27, No. 5, 2003, pp. 354-66. doi:10.1007/s00266-003-3022-1
[168] L. Baumann, J. Kaufman and S. Saghari, “Collagen Fillers,” Dermatologic Therapy, Vol. 19, No. 3, 2006, pp. 134-140. doi:10.1111/j.1529-8019.2006.00067.x
[169] W. S. Kim, D. J. Mooney, P. R. Arany, K. Lee, N. Huebsch and J. Kim, “Adipose Tissue Engineering Using Injectable, Oxidized Alginate Hydrogels,” Tissue Engi- neering Part A, Vol. 18, No. 7-8, 2012, pp. 737-743. doi:10.1089/ten.tea.2011.0250
[170] S.-W. Cho, S.-S. Kim, J.-W. Rhie, H.-M. Cho, C.-Y. Choi and B.-S. Kim, “Engineering of Volume-Stable Adipose Tissues,” Biomaterials, Vol. 26, No. 17, 2005, pp. 3577- 3585. doi:10.1016/j.biomaterials.2004.09.013
[171] N. Torio-Padron, N. Baerlecken, A. Momeni, G. B. Stark and J. Borges, “Engineering of Adipose Tissue by Injection of Human Preadipocytes in Fibrin,” Aesthetic Plastic Surgery, Vol. 31, No. 3, 2007, pp. 285-293. doi:10.1007/s00266-006-0221-6
[172] O. Khanna, M. L. Moya, H. P. Greisler, E. C. Opara and E. M. Brey, “Multilayered Microcapsules for the Sustained-Release of Angiogenic Proteins from Encapsulated Cells,” The American Journal of Surgery, Vol. 200, No. 5, 2010, pp. 655-658. doi:10.1016/j.amjsurg.2010.08.001
[173] J. S. Park, H. N. Yang, D. G. Woo, S. Y. Jeon and K. H. Park, “The Promotion of Chondrogenesis, Osteogenesis, and Adipogenesis of Human Mesenchymal Stem Cells by Multiple Growth Factors Incorporated into Nanosphere- Coated Microspheres,” Biomaterials, Vol. 32, No. 1, 2011, pp. 28-38. doi:10.1016/j.biomaterials.2010.08.088
[174] S.-W. Kang, S.-W. Seo, C.-Y. Choi and B.-S. Kim, “Porous Poly (Lactic-Co-Glycolic Acid) Microsphere as Cell Culture Substrate and Cell Transplantation Vehicle for Adipose Tissue Engineering,” Tissue Engineering Part C: Methods, Vol. 14, No. 1, 2008, pp. 25-34. doi:10.1089/tec.2007.0290
[175] Y.-S. Choi, S.-N. Park and H. Suh, “Adipose Tissue Engineering Using Mesenchymal Stem Cells Attached to Injectable PLGA Spheres,” Biomaterials, Vol. 26, No. 29, 2005, pp. 5855-5863. doi:10.1016/j.biomaterials.2005.02.022
[176] K. G. Marra, A. J. Defail, J. A. Clavijo-Alvarez, S. F. Badylak, A. Taieb, B. Schipper, J. Bennett and J. P. Rubin, “FGF-2 Enhances Vascularization for Adipose Tissue Engineering,” Plastic and Reconstructive Surgery, Vol. 121, No. 4, 2008, pp. 1153-1164. doi:10.1097/01.prs.0000305517.93747.72
[177] J. P. Rubin, J. M. Bennett, J. S. Doctor, B. M. Tebbets and K. G. Marra, “Collagenous Microbeads as a Scaffold for Tissue Engineering with Adipose-Derived Stem Cells,” Plastic and Reconstructive Surgery, Vol. 120, No. 2, 2007, pp. 414-424. doi:10.1097/01.prs.0000267699.99369.a8
[178] S. Natesan, D. G. Baer, T. J. Walters, M. Babu and R. J. Christy, “Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres,” Tissue Engi- neering Part A, Vol. 16, No. 4, 2010, pp. 1369-1384. doi:10.1089/ten.tea.2009.0404
[179] M. L. Moya, M.-H. Cheng, J.-J. Huang, M. E. Francis-Sedlak, S.-W. Kao, E. C. Opara and E. M. Brey, “The Effect of FGF-1 Loaded Alginate Microbeads on Neovascularization and Adipogenesis in a Vascular Pedicle Model of Adipose Tissue Engineering,” Biomaterials, Vol. 31, No. 10, 2010, pp. 2816-2826. doi:10.1016/j.biomaterials.2009.12.053
[180] D. A. Young, D. O. Ibrahim, D. Hu and K. L. Christman, “Injectable Hydrogel Scaffold from Decellularized Human Lipoaspirate,” Acta Biomaterialia, Vol. 7, No. 3, 2011, pp. 1040-1049. doi:10.1016/j.actbio.2010.09.035
[181] K. D. Song, M. Qiao, T. Q. Liu, B. Jiang, H. M. Macedo, X. H. Ma and Z. F. Cui, “Preparation, Fabrication and Biocompatibility of Novel Injectable Temperature-Sensi- tive Chitosan/Glycerophosphate/Collagen Hydrogels,” Chemistry and Materials Science, Vol. 21, No. 10, 2010, pp. 2835-2842. doi:10.1007/s10856-010-4131-4
[182] J. S. Choi, H. J. Yang, B. S. Kim, J. D. Kim, J. Y. Kim, B. Yoo, K. Park, H. Y. Lee and Y. W. Cho, “Human Extracellular Matrix (Ecm) Powders for Injectable Cell Delivery and Adipose Tissue Engineering,” Journal of Controlled Release, Vol. 139, No. 1, 2009, pp. 2-7. doi:10.1016/j.jconrel.2009.05.034
[183] A. E. Turner and L. E. Flynn, “Design and Characterization of Tissue-Specific Extracellular Matrix-Derived Microcarriers,” Tissue Engineering Part C: Methods, Vol. 18, No. 3, 2012, pp. 186-197. doi:10.1089/ten.tec.2011.0246
[184] A. T. Hillel, S. Unterman, Z. Nahas, B. Reid, J. M. Coburn, J. Axelman, J. J. Chae, Q. Guo, R. Trow, A. Thomas, Z. Hou, S. Lichtsteiner, D. Sutton, C. Matheson, P. Walker, N. David, S. Mori, J. M. Taube and J. H. Elisseeff, “Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans,” Science Translational Medicine, Vol. 3, No. 93, 2011, p. 93ra67. doi:10.1126/scitranslmed.3002331
[185] E. M. Horwitz and W. R. Prather, “Cytokines as the Major Mechanism of Mesenchymal Stem Cell Clinical Activity: Expanding the Spectrum of Cell Therapy,” Israel Medical Association Journal, Vol. 11, No. 4, 2009, pp. 209-211.
[186] A. T. Hillel, S. Varghese, J. Petsche, M. J. Shamblott and J. H. Elisseeff, “Embryonic Germ Cells Are Capable of Adipogenic Differentiation in Vitro and in Vivo,” Tissue Engineering Part A, Vol. 15, No. 3, 2009, pp. 479-486. doi:10.1089/ten.tea.2007.0352
[187] C. Dani, “Embryonic Stem Cell-Derived Adipogenesis,” Cells Tissues Organs, Vol. 165, No. 3-4, 1999, pp. 173- 180. doi:10.1159/000016697
[188] D. Nichol and H. Stuhlmann, “EGFL7: A Unique Angiogenic Signaling Factor in Vascular Development and Disease,” Blood, Vol. 119, No. 6, 2012, pp. 1345-1352. doi:10.1182/blood-2011-10-322446
[189] S. Y. Liu, H. M. Zhang, X. J. Zhang, W. Lu, X. H. Huang, H. Xie, J. Zhou, W. H. Wang, Y. J. Zhang, Y. Liu, Z. H. Deng and Y. Jin, “Synergistic Angiogenesis Promoting Effects of Extracellular Matrix Scaffolds and Adipose- Derived Stem Cells During Wound Repair,” Tissue Engineering Part A, Vol. 17, No. 5-6, 2011, pp. 725-739. doi:10.1089/ten.tea.2010.0331
[190] S. P. Zhong, Y. Z. Zhang and C. T. Lim, “Tissue Scaffolds for Skin Wound Healing and Dermal Reconstruction,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Vol. 2, No. 5, 2010, pp. 510-525. doi:10.1002/wnan.100
[191] M. C. Zingaretti, F. Crosta, A. Vitali, M. Guerrieri, A. Frontini, B. Cannon, J. Nedergaard and S. Cinti, “The Presence of UCP1 Demonstrates That Metabolically Active Adipose Tissue in the Neck of Adult Humans Truly Represents Brown Adipose Tissue,” The FASEB Journal, Vol. 23, No. 9, 2009, pp. 3113-3120. doi:10.1096/fj.09-133546
[192] A. Asano, M. Morimatsu, H. Nikami, T. Yoshida and M. Saito, “Adrenergic Activation of Vascular Endothelial Growth Factor mRNA Expression in Rat Brown Adipose Tissue: Implication in Cold-Induced Angiogenesis,” Bio- chemical Journal, Vol. 328, 1997, pp. 179-183.
[193] A. Asano, K. Kimura and M. Saito, “Cold-Induced mRNA Expression of Angiogenic Factors in Rat Brown Adipose Tissue,” Journal of Veterinary Medical Science, Vol. 61, No. 4, 1999, pp. 403-409. doi:10.1292/jvms.61.403
[194] E. A. Neofytou, E. Chang, B. Patlola, L. M. Joubert, J. Rajadas, S. S. Gambhir, Z. Cheng, R. C. Robbins and R. E. Beygui, “Adipose Tissue-Derived Stem Cells Display a Proangiogenic Phenotype on 3D Scaffolds,” Journal of Biomedical Materials Research Part A, Vol. 98, No. 3, 2011, pp. 383-393. doi:10.1002/jbm.a.33113
[195] N. Cuende and A. Izeta, “Clinical Translation of Stem Cell Therapies: A Bridgeable Gap,” Cell Stem Cell, Vol. 6, No. 6, 2010, pp. 508-512. doi:10.1016/j.stem.2010.05.005

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.