Thermal Energy Collection Forecasting Based on Soft Computing Techniques for Solar Heat Energy Utilization System


In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data.

Share and Cite:

A. Yona and T. Senjyu, "Thermal Energy Collection Forecasting Based on Soft Computing Techniques for Solar Heat Energy Utilization System," Smart Grid and Renewable Energy, Vol. 3 No. 3, 2012, pp. 214-221. doi: 10.4236/sgre.2012.33030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. D. Wasserman, “Neural Computing: Theory and Practice,” Neural Networks, Vol. 3, No. 6, 1989, pp. 713-714. doi:10.1016/0893-6080(90)90059-T
[2] T. Hiyama and K. Kitabayashi, “Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environmental Information,” IEEE Transactions on Energy Conversion, Vol. 12, No. 3, 1997, pp. 241-247. doi:10.1109/60.629709
[3] A. Sozen, E. Arcakhoglu, M. Ozalp and N. Caglar, “Forecasting Based on Neural Network Approach of Solar Potential in Turkey,” Renewable Energy, Vol. 30, No. 7, 2005, pp. 1075-1090. doi:10.1016/j.renene.2004.09.020
[4] F. O. Hocaoglu, O. N. Gerek and M. Kurban, “The Effect of Model Generated Solar Radiation Data Usage in Hybrid (Wind-PV) Sizing Studies,” Energy Conversion and Management, Vol. 50, No. 12, 2009, pp. 2956-2963. doi:10.1016/j.enconman.2009.07.011
[5] F. O. Hocao?lu, “Novel Analytical Hourly Solar Radiation Models for Photovoltaic Based System Sizing Algorithms,” Energy Conversion and Management, Vol. 51, No. 12, 2010, pp. 2921-2929. doi:10.1016/j.enconman.2010.06.033
[6] K. Ulgen and A. Hepbasli, “Diffuse Solar Radiation Estimation Models for Turkey’s Big Cities,” Energy Conversion and Management, Vol. 50, No. 1, 2009, pp. 149-156. doi:10.1016/j.enconman.2008.08.013
[7] S. M. Robaa, “Validation of the Existing Models for Estimating Global Solar Radiation over Egypt,” Energy Conversion and Management, Vol. 50, No. 1, 2009, pp. 184-193. doi:10.1016/j.enconman.2008.07.005
[8] H. Aras, O. Balli and A. Hepbasli, “Estimating the Horizontal Diffuse Solar Radiation over the Central Anatolia Region of Turkey,” Energy Conversion and Management, Vol. 47, No. 15-16, 2006, pp. 2240-2249. doi:10.1016/j.enconman.2005.11.024
[9] A. M. Abdel-Ghany and I. M. Al-Helal, “Analysis of Solar Radiation Transfer: A Method to Estimate the Porosity of a Plastic Shading Net,” Energy Conversion and Management, Vol. 52, No. 3, 2011, pp. 1755-1762. doi:10.1016/j.enconman.2010.11.002
[10] J. Almorox, C. Hontoria and M. Benito, “Statistical Validation of Daylength Definitions for Estimation of Global Solar Radiation in Toledo, Spain,” Energy Conversion and Management, Vol. 46, No. 9-10, 2005, pp. 1465-1471. doi:10.1016/j.enconman.2004.07.007
[11] M. Benghanem, A. Mellit and S. N. Alamri, “ANN-Based Modelling and Estimation of Daily Global Solar Radiation Data: A Case Study,” Energy Conversion and Management, Vol. 50, No. 7, 2009, pp. 1644-1655. doi:10.1016/j.enconman.2009.03.035
[12] G. López, F. J. Batlles and J. Tovar-Pescador, “A New Simple Parameterization of Daily Clear-Sky Global Solar Radiation including Horizon Effects,” Energy Conversion and Management, Vol. 48, No. 1, 2007, pp. 226-233. doi:10.1016/j.enconman.2006.04.019
[13] M.-F. Li, H.-B. Liu, P.-T. Guo and W. Wu, “Estimation of Daily Solar Radiation from Routinely Observed Meteorological Data in Chongqing, China,” Energy Conversion and Management, Vol. 51, No. 12, 2010, pp. 2575-2579. doi:10.1016/j.enconman.2010.05.021
[14] M. Mohandes, A. Balghonaim, M. Kassas, S. Rehman, and T. O. Halawani, “Use of Radial Basis Functions for Estimating Monthly Mean Daily Solar Radiation,” Solar Energy, Vol. 68, No. 2, 2000, pp. 161-168. doi:10.1016/S0038-092X(99)00071-7
[15] S. Chen, C. F. N. Cowan and P. M. Grant, “Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks,” IEEE Transactions on Neural Networks, Vol. 2, No. 2, 1991, pp. 302-309. doi:10.1109/72.80341
[16] J. L. Elman, “Finding Structure in Time,” Cognitive Science, Vol. 14, No. 2, 1990, pp. 179-211. doi:10.1016/0364-0213(90)90002-E
[17] B. Kermanshahi, “Recurrent Neural Network for Forecasting Next 10 Years Loads of Nine Japanese Utilities,” Neurocomputing, Vol. 23, No. 1-3, 1998, pp. 125-133. doi:10.1016/S0925-2312(98)00073-3
[18] L. Breiman, “Random Forests,” Machine Learning, Vol. 45, No. 1, 2001, pp. 5-32. doi:10.1023/A:1010933404324
[19] M. T. Hagan and M. B. Menhaj, “Training Feed-Forward Networks with the Marquardt Algorithm,” IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1994, pp. 989993. doi:10.1109/72.329697
[20] Amd View (C) Weather Toy, “Meteorological data base: Ground Observation Ver. 1.00,” Japan Meteorological Business Support Center, 2004.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.