Using Genetic Algorithm for Identification of Diabetic Retinal Exudates in Digital Color Images


Blood vessels in ophthalmoscope images play an important role in diagnosis of some serious pathology on retinal images. Hence, accurate extraction of vessels is becoming a main topic of this research area. In this paper, a new hybrid approach called the (Genetic algorithm and vertex chain code) for blood vessel detection. And this method uses geometrical parameters of retinal vascular tree for diagnosing of hypertension and identified retinal exudates automatically from color retinal images. The skeletons of the segmented trees are produced by thinning. Three types of landmarks in the skeleton must be detected: terminal points, bifurcation and crossing points, these points are labeled and stored as a chain code. Results of the proposed system can achieve a diagnostic accuracy with 96.0% sensitivity and 98.4% specificity for the identification of images containing any evidence of retinopathy.

Share and Cite:

R. Mansour, "Using Genetic Algorithm for Identification of Diabetic Retinal Exudates in Digital Color Images," Journal of Intelligent Learning Systems and Applications, Vol. 4 No. 3, 2012, pp. 188-198. doi: 10.4236/jilsa.2012.43019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. M. Aibinu, M. I. Iqbal, A. A. Shafie, M. J. E. Salami and M. Nilsson, “Vascular Intersection Detection in Retina Fundus Images Using a New Hybrid Approach,” Computers in Biology and Medicine, Vol. 40, No. 1, 2010, pp. 81-89. doi:10.1016/j.compbiomed.2009.11.004
[2] A. M. Aibinu, M. I. Iqbal, M. Nilsson and M. J. E. Salami, “A New Method of Correcting Uneven Illumination Problem in Fundus Images,” International Conference on Robotics, Vision, Information, and Signal Processing, Penang, 28-30 November 2007, pp. 445-449.
[3] A. M. Aibinu, M. I. Iqbal, M. Nilsson and M. J. E. Salami, “Automatic Diagnosis of Diabetic Retinopathy from Fundus Images Using Digital Signal and Image Processing Techniques,” International Conference on Robotics, Vision, Information, and Signal Processing, Penang, 28-30 November 2007, pp. 510-515.
[4] “Screening for Diabetic Retinopathy in Europe—15 Years after St. Vincent’ the Liverpool Declaration 2005,”Conference Report, Liverpool, November 2005.
[5] M. I. Iqbal, A. M. Aibinu, I. B. Tijani, M. Nilsson and M. J. E. Salami, “Cross Point Detection Using Fuzzy Logic and Neural Network,” Proceedings of the International Conference on Computer and Communication Engineering, Kuala Lumpur, 13-15 May 2008, pp. 241-246.
[6] T. Wong and R. McIntosh, “Hypertensive Retinopathy Signs as Risk Indicators of Cardiovascular Morbidity and Mortality,” British Medical Bulletin, Vol. 73-74, No. 1, 2005, pp. 57-70. doi:10.1093/bmb/ldh050
[7] R.Gelman, M. E. Martinez-Perez, D. K. Vanderveen, A. Moskowitz and A. B. Fulton, “Diagnosis of plus Disease in Retinopathy of Prematurity Using Retinal Image Multiscale Analysis,” Investigative Ophthalmology & Visual Science, Vol. 46, No. 12, 2005, pp. 4734-4738. doi:10.1167/iovs.05-0646
[8] M. Ikram, J. Witteman, J. Vingerling, M. Breteler, A. Hofman and P. de Jong, “Retinal Vessel Diameters and Risk of Hypertension: The Rotterdam Study,” Hypertension, Vol. 47, 2006, pp. 189-194. doi:10.1161/01.HYP.0000199104.61945.33
[9] R. Klein, B. Klein, S. Moss, T. Wong, L. Hubbard, K. Cruickshanks and M. Palta, “The Relation of Retinal Vessel Caliber to the Incidence and Progression of Diabetic Retinopathy—Xix: The Wisconsin Epidemiologic Study of Diabetic Retinopathy,” Archives Ophthalmology, Vol. 122, No. 1, 2004, pp. 76-83. doi:10.1001/archopht.122.1.76
[10] T. Wong, A. Shankar, R. Klein and B. Klein, “Retinal Vessel Diameters and the Incidence of Gross Proteinuria and Renal Insufficiency in People with Type 1 Diabetes,” Diabetes, Vol. 53, No. 1, 2004, pp. 179-184. doi:10.2337/diabetes.53.1.179
[11] M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, A. A. Bharath and K. H. Parker, “Retinal Blood Vessel Segmentation by Means of Scale-Space Analysis and Region Growing,” In: C. Taylor and A. Colchester, Eds., MICCAI-99, Lectures Notes in Computer Science, Springer-Verlag, 1999, pp. 90-97.
[12] A. Hoover, V. Kouznetsova and M. Goldbaum, “Locating Blood Vessels in Retinal Images by Piecewise Threshold Probing of a Matched Filter Response,” IEEE Transactions on Medical Imaging, Vol. 19, No. 3, 2000, pp. 203-210. doi:10.1109/42.845178
[13] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever and B. van Ginneken, “Ridge-Based Vessel Segmentation in Color Images of the Retina,” IEEE Transactions on Medical Imaging, Vol. 23, No. 4, 2004, pp. 501-509. doi:10.1109/TMI.2004.825627
[14] X. Jiang and D. Mojon, “Adaptive Local Thresholding by Verification Based Multithreshold Probing with Application to Vessel Detection In Retinal Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 1, 2003, pp. 131-137. doi:10.1109/TPAMI.2003.1159954
[15] Z. Guo and R. W. Hall, “Parallel Thinning with Two-Sub Iteration Algorithms,” Communications of the ACM, Vol. 32, No. 3, 1989, pp. 359-373. doi:10.1145/62065.62074
[16] A.-B. M. Salem, A. A. Sewisy and U. A. Elyan, “A Vertex Chain Code Approach for Image Recognition,” Journal of Graphics, Vision and Image Processing, Vol. 5, No. 3, 2005, pp. 1-8.
[17] M. Sabaghi, S. R. Hadianamrei, M. Fattahi, M. R. Kouchaki and A. Zahedi, “Retinal Identification System Based on the Combination of Fourier and Wavelet Transform,” Journal of Signal and Information Processing, Vol. 3, 2012, pp. 35-38. doi:10.4236/jsip.2012.31005
[18] V. V. Govindaraju, Z. Shi and J. Schneider, “Feature Extraction Using a Chaincoded Contour Representation,” International Conference on Audio and Video Based Biometric Person Authentication, Guildford, 9-11 June 2003. doi:10.1007/3-540-44887-X_32
[19] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison Wesley, New York, 1989.
[20] M. Mitchell, “An Introduction to Genetic Algorithms,” The MIT Press, Cambridge, 1997.
[21] The STARE Database, 2009.
[22] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Researchers,” Technical Report MS1143— Extended Version of HPL-2003-4, HP Laboratories, 2004.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.