Solving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method

DOI: 10.4236/ns.2012.48077   PDF   HTML     6,314 Downloads   11,155 Views   Citations

Abstract

In this paper, we apply the differential transformation method to high-order nonlinear Volterra- Fredholm integro-differential equations with se- parable kernels. Some different examples are considered the results of these examples indi-cated that the procedure of the differential transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.

Share and Cite:

Behiry, S. and Mohamed, S. (2012) Solving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method. Natural Science, 4, 581-587. doi: 10.4236/ns.2012.48077.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kythe, P.K. and Puri, P. (1992) Computational methods for linear integral equations. University of New Orleans, New Orleans.
[2] Wazwaz, A.M. (2006) A comparison study between the modified decomposition method and traditional method. Applied Mathematics and Computation, 181, 1703-1712. doi:10.1016/j.amc.2006.03.023
[3] Rashed, M.T. (2004) Numerical solution of functional differential, integral and integro-differential equations. Applied Numerical Mathematics, 156, 485-492.
[4] Razzaghi, M. and Yousefi, S. (2005) Legendre wavelets method for nonlinear Volterra-Fredholm integral equations. Mathematics and Computers in Simulation, 70, 1-8. doi:10.1016/j.matcom.2005.02.035
[5] Maleknejed, K. and Mirzaee, F. (2006) Numerical solution of integro-differential equations by using rationalized Haar functions method. Kyber-netes, 35, 1735-1744. doi:10.1108/03684920610688694
[6] Reihani, M.H. and Abadi, Z. (2007) Rationalized Haar functions method for solving Fredholm and Volterra integral equations. Journal of Computational and Applied Mathematics, 200, 12-20. doi:10.1016/j.cam.2005.12.026
[7] Darania, P., Abadian, E. and Oskoi, A.V. (2006) Linearization method for solving non-linear integral equations. Mathematical Problems in Engineering, 1-10. doi:10.1155/MPE/2006/73714
[8] Zhao, J. and Corless, R.M. (2006) Compact finite difference method for integro-differential equations. Applied Mathematics and Computation, 177, 271-288. doi:10.1016/j.amc.2005.11.007
[9] Abbasbandy, S. and Taati, A. (2009) Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation. Journal of Computational and Applied Mathematics, 231, 106-113. doi:10.1016/j.cam.2009.02.014
[10] Ebadi, G., Rahimi-Ardabili, M. Y. and Shahmorad, S. (2007) Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method. Applied Mathematics and Computation, 188, 1580-1586. doi:10.1016/j.amc.2006.11.024
[11] Maleknejad, K., Basirat, B. and Hashemizadeh, E. (2011) Hybrid Legendre polynomials and Block-pulse functions approach for nonlinear Volterra-Fredholm integro-differential equations. Computers & Mathematics with Applications, 61, 2821-2828. doi:10.1016/j.camwa.2011.03.055
[12] Wazwaz, A.M. (2010) The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Applied Mathematics and Computation, 216, 1304-1309. doi:10.1016/j.amc.2010.02.023
[13] Araghi, M.A. and Behzadi, Sh.S. (2009) Solving nonlinear Volterra-Fredholm integro-differential equations using the modified Adomian decomposition method. Computational Methods in Applied Mathematics, 9, 321-331.
[14] Darania, P. and Ivaz, K. (2008) Numerical solution of nonlinear Volterra-Fredholm integro-differential equations. Applied Mathematics and Computation, 56, 2197- 2209. doi:10.1016/j.camwa.2008.03.045
[15] Maleknejad, K. and Mohmoudi, Y. (2003) Taylor Polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations. Applied Mathematics and Computation, 145, 641-653. doi:10.1016/S0096-3003(03)00152-8
[16] Yalcinbas, S. (2002) Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations. Applied Mathematics and Computation, 127, 195-206. doi:10.1016/S0096-3003(00)00165-X
[17] Yüzbasi, S., Sahin, N. and Yildirim, A. (2012) A collocation approach for solving high-order linear Fredholm-Volterra integro-differential equations. Mathematical and Computer Modelling, 55, 547-563. doi:10.1016/j.mcm.2011.08.032
[18] Zhou, J.K. (1986) Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan.
[19] Arikoglu, A. and Ozkol, I. (2005) Solution of boundary value problems for integro-differential equations by using differential transform method. Applied Mathematics and Computation, 168, 1145-1158. doi:10.1016/j.amc.2004.10.009
[20] Arikoglu, A. and Ozkol, I. (2008) Solution of integral and integro-differential equation systems by using differential transform method. Computers & Mathematics with Applications, 65, 2411-2417. doi:10.1016/j.camwa.2008.05.017
[21] Odibat, Z.M. (2008) Differential transform method for solving Volterra integral equation with separable kernels. Mathematical and Computer Modelling, 48, 1144-1149. doi:10.1016/j.mcm.2007.12.022
[22] Biazar, J. and Eslami, M. (2011) Differential transform method for systems of Volterra integral equations of the second kind and comparison with homotopy perturbation method. International Journal of Physical Sciences, 6, 1207-1212.
[23] Wang, W. (2006) An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization. Applied Mathematics and Computation, 172, 1-23. doi:10.1016/j.amc.2005.01.116

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.