The low frequency electromagnetic field on the rat EEG

Abstract

The aim of the present study was to find out the effects of low frequency electromagnetic field (EMF) 50 Hz - 10 mT on the rat electroencephalogram (EEG) recorded from the rat brain cortex and from the skull surface. The rats were, whole body, exposed to this EMF intensity one hour daily for 7 days. Recovery study was done after one week from stopping the EMF exposure. The effects of the filed were estimated by compression of the averaged EEG frequency spectra in the range of frequencies between 0.2 - 0.7 Hz and by comparison of amplitude of EEG waves in control, exposed to EMF and recovery animals. Statistically significant effects of EMF were observed both in EEG amplitude and power reduction at most EEG frequencies. Also, noticeable variations were observed in normal values of maximum amplitude and number of successive EEG epochs recorded from brain and skull surfaces after exposure to ELF magnetic fields. These results show that a weak low EMF can influence the spontaneous electrical rat brain activity in the animals subjected to the EMF.

Share and Cite:

M. Sallam, S. (2012) The low frequency electromagnetic field on the rat EEG. Journal of Biophysical Chemistry, 3, 227-232. doi: 10.4236/jbpc.2012.33026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hartwig, V., Giovannetti, G., Vanello, N., et al. (2009) Public Health. International Journal of Environmental Research, 6, 1778.
[2] Zare, S., Alivandi, S. and Ebodi, A.G. (2007) Histological studies of the low frequency electromagnetic fields effect on liver, testes and kidney in Guinea pig. World Applied Sciences Journal, 2, 509-511.
[3] Strasak, L. and Smarad, J. (2002) Effects of low-frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry, 55, 161-164. doi:10.1016/S1567-5394(01)00152-9
[4] Berg, H. (1993) Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Bioelectrochemistry and Bioenergetics, 31, 1-25. doi:10.1016/0302-4598(93)86102-7
[5] Fatourechi, M., Bashashati, A., Ward, R.K. and Birch, G.E. (2007) EMG and EOG artifacts in brain computer interface system. Clinical Neurophysiology, 118, 480-494. doi:10.1016/j.clinph.2006.10.019
[6] Babiloni, C., Babiloni, F., Carducci, F., Cappa, S.F., Cincotti, F., Del Percio, C., et al. (2004) Human cortical responses during one-bit short-term memory. A high-resolution EEG study on delayed choic reaction time tasks. Clinical Neurophysiology, 115, 161-170. doi:10.1016/S1388-2457(03)00286-4
[7] Babiloni, C., Miniussi, C., Babiloni, F., Carducci, F., Cincotti, F. and Del Percio, C. (2004) Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study. Cognitive Brain Research, 19, 259-268. doi:10.1016/j.cogbrainres.2003.12.010
[8] He, B., Hori, J. and Babiloni, F. (2006) EEG inverse problems, in Encyclopedia in biomedical engineering. John Wiley & Sons, Inc., Hoboken, 1355-1363. doi:10.1002/9780471740360.ebs0655
[9] Mathie, A., Kennard, L.E. and Veale, E.L. (2003) Neuronal ion channels and their sensitivity to extremely low frequency weak electric field. Radiation Protection Dosimetry, 106, 311-316. doi:10.1093/oxfordjournals.rpd.a006365
[10] Lednev, V.V., Srebnitskaya, I.K., Hyasov, E.N., Rogdestven-Skaya, Z.E., Klimov, A.A., Belova, N.A. and Tiras, K.P. (1996) Magnetic parametric resonance in biosystems: experimental verification of the theoretical predictions with the use of regenerating planarians as a test-system. Biofizika, 41, 815-825.
[11] Lednev, V.V., Srebnitskaya, I.K., Hyasov, E.N., Rogdestven-Skaya, Z.E., Klimov, A.A. and Tiras, K.P. (1998) Magnetic parametric resonance in biosystems: experimental verification of the theoretical predictions with the use of regenerating planarians as a test-system. Brain Research, 781, 182-187.
[12] Watanabe, Y., Nakagwa, M. and Miyakoshi, Y. (1997) Enhancement of lipid peroxidation in the liver of mice exposed to magnetic fields. Industrial Health, 35, 285-290. doi:10.2486/indhealth.35.285
[13] Stigsby, B., Obrist, W.D. and Sulg, I.A. (1973) Automatic data acquisition and period-amplitude analysis of the electrencephalogramm. Computer Programs in Biomedicine, 3, 93-104. doi:10.1016/0010-468X(73)90025-1
[14] Vorobyov, V.V., Sosunov, E.A., Kukushkin, N.H. and Lednev, V.V. (1998) Weak combined magnetic field affects basic morphine-induced rat’s EEG. Brain Research, 781, 182-187. doi:10.1016/S0006-8993(97)01228-6
[15] Shuvalova, L.A., Ostrovskya, M.V., Sosunov, E.A. and Lednev, V.V. (1991) Weak magnetic fields tuned to the parametric resonance for Ca2+ changes the rate of calmodulin dependent myosin phosphorylation. Doklady Akademii Nauk SSSR, 317, 227-230.
[16] Markow, M.S., Wang, S. and Pilla, A.A. (1993) Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in cell-free preparation. Bioelectrochemistry and Bioenergetics, 30, 119-125. doi:10.1016/0302-4598(93)80069-7
[17] Prato, F.S., Carson, J.J.L., Ossenkopp, K.P. and Kavaliers, M. (1995) Possible mechanisms by which extremely low frequency magnetic fields affect opioid function. FASEB Journal, 9, 807-814.
[18] Linda, S., Pierre, S.T. and Persinger, M.A. (2009) Attenuation of epilepsy-induced brain damage in the temporal cortices of rats by exposure to LTP-patterned magnetic fields. Neuroscience Letters, 450,147-151. doi:10.1016/j.neulet.2008.11.019
[19] Prato, F.S., Kavaliers, M. and Carson, J.J.I. (1996) Behavioral responses to magnetic fields by lend snails are dependent on both magnetic field direction and light. Proceedings of the Royal Society B: Biological Sciences, 263, 1473-1442. doi:10.1098/rspb.1996.0209
[20] Ye, S.R., Yang, J.W. and Chen, C.M. (2004) Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. International Journal of Radiation Biology, 80, 699-708. doi:10.1080/09553000400017424
[21] Shen, J.-F., Chao, Y.-L. and Du, L. (2007) Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neuroscience Letters, 415, 164-168. doi:10.1016/j.neulet.2007.01.015
[22] Rosen, A.D. (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. American Journal of Physiology—Cell Physiology, 262, C1418- C1422.
[23] Kim, S., Chung, Y.-A., Lee, C.-U., Chae, J.-H., Juh, R. and Jeong, J. (2010) Target-Specific rCBF changes induced by 0.3-T static magnetic field exposure on the brain. Brain Research, 1317, 211-217. doi:10.1016/j.brainres.2009.10.057
[24] Nikolic, L., Kartelija, G. and Nedelikovis, M. (2008) Effect of static magnetic fields on bioelectric properties of the Br and Ni neurons of snail Helix pomatia. Comparative Biochemistry and Physiology, 151, 657-663.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.