Share This Article:

The use of DCEEG to estimate functional and metabolic state of nervous tissue of the brain at hyper- and hypoventilation

Abstract Full-Text HTML Download Download as PDF (Size:4234KB) PP. 172-182
DOI: 10.4236/wjns.2012.23027    5,676 Downloads   8,969 Views   Citations
Author(s)    Leave a comment

ABSTRACT

A pilot study has been made of the simultaneous DC potential and total slow electrical activity changes during modeling various metabolic and functional states of the human brain. The multi-electrode DCEEG recordings have been performed during the hyperventilation (frequent deep one-minute long breathing motions) and the hypoventilation (voluntary breath holding). It has been shown that the ischemic state occurring in hyperventilation is accompanied by the negative shift of DC potential and increase in the EEG rhythms amplitude. A distention of brain vessels during hypoventilation (voluntary breath-hold) and an improvement of blood supply and thus improvement of vital and functional state of neurons gave rise to an increase in the EEG rhythm amplitude too, though against a background of a positive DC-potential shift. Obtained results are considered with context the generation of the qualitatively different functional states of brain cells during hyper- and hypoventilation which is reflected in their resting potential and activity. The conducted study show the prospects for DCEEG and the method we used for DCEEG data processing to understand the character of functional and metabolic changes in the nervous tissue.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Murik, S. (2012) The use of DCEEG to estimate functional and metabolic state of nervous tissue of the brain at hyper- and hypoventilation. World Journal of Neuroscience, 2, 172-182. doi: 10.4236/wjns.2012.23027.

References

[1] Murik, S.E. (2004) Omegaelectroencephalography (DC-EEG) as a new way of estimation the functional and metabolic state of neural tissue. Bulletin of Eastern-Siberian Scientific Center SB RAMS, 3, 189-194.
[2] Vanhatalo, S., Voipio, J. and Kaila, K. (2005) Full-band EEG (FbEEG): An emerging standard in electroencephalography. Clinical Neurophysiology, 116, 1-8. doi:10.1016/j.clinph.2004.09.015
[3] Cowen, M.A. (1974) The brain as generator of transcephalically measured direct current potentials. Psychophysiology, 11, 321-335. doi:10.1111/j.1469-8986.1974.tb00551.x
[4] Caspers, H., Speckmann, E.-J. and Lehmenkiihler, A. (1987) DC potentials of the cerebral cortex seizure activity and changes in gas pressures. Reviews of Physiology, Biochemistry and Pharmacology, 106, 127-178. doi:10.1007/BFb0027576
[5] Birbaumer, N., Elbert, T., Canavan, A.G. and Rockstroh, B. (1990) Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1-41.
[6] Speckmann, E.-J. and Elger, C. (1999) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer, E. and Lopes, da Silva, F., Eds., Electroencephalography: Basic Principles, Clinical Applications and Related Fields, Williams and Wilkins, Baltimore, 15-27.
[7] Goldring, S. and O’Leary, J.-L. (1951) Summation of certain enduring sequelae of cortical activation in the rabbit. Electroencephalography and Clinical Neurophysiology, 3, 329-340. doi:10.1016/0013-4694(51)90081-8
[8] Rowland, V. and Andersen, R. (1971) Brain steady potential shifts. Progress in Psychobiology and Physiological Psychology, 4, 37-51.
[9] Schmitt, B., Molle, M., Marshall, L., Hallschmid, M. and Born, J. (2001) Scalp recorded direct current (DC) potential shifts associated with food intake in hungry humans Behavioural Brain Research, 119, 85-92. doi:10.1016/S0166-4328(00)00338-7
[10] Marczynski, T.J. (1993) Neurochemical interpretation of cortical slow potentials as they relate to cognitive processes and a parsimonious model of mammalian brain. In: Callum, W.C. and Curry, S.H., Eds., Slow Potential Changes in the Human Brain, Plenum Press, New York, 253-275.
[11] Roland, P.E. (2002) Dynamic depolarization fields in the cerebral cortex. Trends in Neurosciences, 25, 183-190. doi:10.1016/S0166-2236(00)02125-1
[12] Speckmann, E.-J., Caspers, H. and EIger, C.E. (1984) Neuronal mechanisms underlying the generation of field potentials. In: Elbert, B., Rockstroh, W., Lutzenberger, N., and Birbaumer, N., Eds., Self-Regulation of the Brain and Behavior, Springer, Berlin, 9-25.
[13] Somjen, G.G. (1973) Electrogenesis of sustained potentials. Progress in Neurobiology, 1, 201-237. doi:10.1016/0301-0082(73)90012-9
[14] Rockstroh, B. (1990) Hyperventilation-induced EEG changes in humans and their modulation by an anticonvulsant drug. Epilepsy Research, 7, 146.
[15] Laming, P.P., Kimelberg, H., Robinson, S., Salm, A., Hawrylak, N., Muller, C., Roots, B. and Ng, K. (2000) Neuronal-glial interacnions and behavior. Neuroscience & Biobehavioral Reviews, 24, 295-340. doi:10.1016/S0149-7634(99)00080-9
[16] Rebert, C.S. (1978) Electrogenesis of slow potential changes in the central nervous system: A summary of issues. In: Otto, D.A., Ed., Multidisdplinary Perspectives in Event Related Brain Potential Research, US Environmental Protection Agency, Washington, 3-11.
[17] Roitbak, A.I., Fanardjian, V.V., Melkonyan, D.S. and Melkonyan, A.A. (1987) Contribution of glia and neurons to the surface-negative potentials of the cerebral cortex during its electrical stimulation. Neuroscience, 20, 1057-1067. doi:10.1016/0306-4522(87)90263-6
[18] Vanhatalo, S., Tallgren, P., Becker, C., Holmes, M.D., Miller, J.W., Kaila, K. and Voipio, J. (2003) Scalp-recorded slow EEG responses generated in response to hemodynamic changes in human brain. Clinical Neurophysiology, 114, 1744-1754. doi:10.1016/S1388-2457(03)00163-9
[19] Voipio, J., Tallgren, P., Heinonen, E., Vanhatalo, S. and Kaila, K. (2003) Millivolt-scale DC shifts in the human scalp EEG: Evidence for a nonneuronal generator. Journal of Neurophysiology, 89, 2208-2214. doi:10.1152/jn.00915.2002
[20] Tschirgi, R.D. and Taylor, J.L. (1958) Slowly changing bioelectric potentials associated with the blood-brain barrier. American Journal of Physiology, 195, 7-22.
[21] Murik, S.E. and Shapkin, A.G. (2004) Simultaneous recording of the EEG and direct current (DC) potential makes it possible to assess the functional and metabolic state of the nervous tissue. International Journal of Neuroscience, 114, 921-934. doi:10.1080/00207450490450154
[22] Tallgrena, P., Vanhatalo, S., Kailaa, K. and Voipio, J. (2005) Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clinical Neurophysiology, 116, 799-806. doi:10.1016/j.clinph.2004.10.001
[23] Marshall, L., M?lle, M., Schreiber, H., Fehm, H.L. and Born, J. (1994) Scalp recorded direct current potential shifts associated with the transition to sleep in man. Electroencephalography and Clinical Neurophysiology, 91, 346-352. doi:10.1016/0013-4694(94)00195-2
[24] Picton, T.W. and Hillyard, S.A. (1972) Cephalic skin potentials in electroencephalography. Electroencephalography and Clinical Neurophysiology, 33, 419-424. doi:10.1016/0013-4694(72)90122-8
[25] Tomita-Gotoh, S. and Hayashida, Y. (1996) Scalp-recorded direct current potential shifts induced by hypocapnia and hypercapnia in humans. Electroencephalography and Clinical Neurophysiology, 99, 90-97. doi:10.1016/0921-884X(96)95170-X
[26] Biilow, I.V., Elbert, T., Rockstroh, B., Luzenberger, W., Canavan, A. and Birbaumer, N. (1989) Effects of hyperventilation on EEG frequency and slow cortical potentials in relation to an anticonvulsant and epilepsy. Psychophysiology, 3, 147-154.
[27] Abbott, D.F., Opdam, H.I., Briellmann, R.S. and Jackson, G.D. (2005) Brief breath holding may confound functional magnetic resonance imaging studies. Human Brain Mapping, 24, 284-290. doi:10.1002/hbm.20086
[28] Markus, H.S. and Harrison, M.J. (1992) Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breathholding as the vasodilatory stimulus. Stroke, 23, 668-673. doi:10.1161/01.STR.23.5.668
[29] Kraaier, V., Van Huffelen, A.C. and Wieneke, G.H. (1989) The hyperventilation-induced ischaemia model in human neuropharmacology: Neurophysiological and psychometric studies of aniracetam and 3-OH aniracetam. European Journal of Clinical Pharmacology, 36, 605-611. doi:10.1007/BF00637744
[30] Kraaier, V., Van Huffelen, A.C. and Wieneke, G.H. (1988) Changes in quantitative EEG and blood flow velocity due to standardized hyperventilation: A model of transient ischaemia in young human subjects. Electroencephalography and Clinical Neurophysiology, 70, 377-387. doi:/10.1016/0013-4694(88)90015-6
[31] Nishino, T. (2009) Pathophysiology of dyspnea evaluated by breath-holding test: Studies of furosemide treatment. Respiratory Physiology & Neurobiology, 167, 20-25. doi:10.1016/j.resp.2008.11.007
[32] Caspers, H. (1993) DC potentials of the brain. In: Haschke, W., Roitbak, A.I. and Speckmann, E.-J., Eds., Slow Potential Changes in the Brain, Birkhfiuser, Boston, 9-20.
[33] Caspers, H. and Speckmann, E.-J. (1974) Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Remond, A., Ed., Handbook of Electroencephaiography and Clinical Neurophysiology, Elsevier, Amsterdam, 41-65.
[34] Nita, D.A., Vanhatalo, S., Lafortune, F.D., Voipio, J., Kaila, K. and Amzica, F. (2004) Nonneuronal origin of CO2-related DC EEG shifts: An in vivo study in the cat. Journal of Neurophysiology, 92, 1011-1022. dx.doi:10.1152/jn.00110.2004
[35] Picton, T.W., Pivik, R.T. and Godbout, R. (1979) Scalp-recorded DC potential shifts associated with hyperventilation in human subjects. Canadian Journal Neurological Sciences, 6, 380.
[36] Kuroda, S., Houkin, K., Hoshi, Y., Tamura, M., Kazumata, K. and Abe, H. (1996) Cerebral hypoxia after hyperventilation causes ‘re-build-up’ phenomenon and TIA in childhood moyamoya disease: A near-infrared spectroscopy study. Child’s Nervous System, 12, 448-453.
[37] Koroleva, V.I. and Vinogradova, L.V. (2000) Ischemic and hypoxic depolarization in the neocortex. Journal of Highest Nerve Activity, 50, 612-621.
[38] Dijkhuizen, R.M., Beekwilder, J.P., van der Worp, H.B., van der Sprenkel, J.W.B., Tulleken, K.A. and Nicolay, K. (1999) Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Research, 840, 194-205. doi:10.1016/S0006-8993(99)01769-2
[39] Higuchi, T., Takeda, Y., Hashimoto, M., Nagano, O. and Hirakawa, M. (2002) Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: Relationship between propagation of recurrent depolarization and growth of the ischemic core. Journal of Cerebral Blood Flow and Metabolism, 22, 71-79. doi:10.1097/00004647-200201000-00009
[40] Marczynski, T.J., York, J.L. and Hackett, J.T. (1969) Steady potential correlates of positive reinforcement: Reward contingent positive variation. Science, 163, 301.
[41] Kohno, K., Back, T., Hoehn-Berlage, M. and Hossmann, K.A. (1995) A modified rat model of middle cerebral artery thread occlusion under electrophysiological control for magnetic resonance investigations. Magnetic Resonance Imaging, 13, 65-71. doi:10.1016/0730-725X(94)00081-D
[42] Sufianova, G.Z., Murik, S.E., Sufianov, A.A., Usov, L.A., Shapkin, A.G. and Taborov, M.V. (2002) Functional estimation of the cyclopentyladenosine neuroprotective action according to EEG at a focal cerebral ischemia in the rats. Bulletin of Eastern-Siberian Scientific Center SB RAMS, 1, 179-185.
[43] Shefner, S.A. and Chiui, R.H. (1986) Adenosine inhibits locus coereleus neurons: An intracellular study in a rat brain slices preparation. Brain Research, 366, 364-368. doi:10.1016/0006-8993(86)91320-X

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.