Biomarkers in Nile Tilapia Oreochromis niloticus niloticus (Linnaeus, 1758) to Assess the Impacts of River Nile Pollution: Bioaccumulation, Biochemical and Tissues Biomarkers


The use of biomarkers has become an important tool for modern environmental assessment as they can help to predict pollutants involved in the monitoring program. Here I present data on bioaccumulation, biochemical and tissues biomarkers in Nile tilapia as early warning indicators of river Nile pollution. Nile tilapia sampled from downstream sites accumulated higher levels of all the detected heavy metals than those collected from upstream sites. Heavy metal residues in the tissues of Nile tilapia exhibited different patterns of accumulation and distribution among the selected tissues. Remarkable alterations in the activities of glucose-6-phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH) in the tissues of Nile tilapia were detected. These alterations were followed, in the present study, by the occurrence of histological lesions in liver and gill tissues of fish collected from the same sites. Alterations in bioaccumulation patterns, in enzyme activities and in histology go in parallel with the elevation in the levels of water chemical parameters detected in the downstream sites as a result of pollution stress in these areas. These results provide evidence that bioaccumulation, biochemical and tissues biomarkers can be sensitive indicators of exposure to mixed pollutants in surface waters.

Share and Cite:

A. Osman, "Biomarkers in Nile Tilapia Oreochromis niloticus niloticus (Linnaeus, 1758) to Assess the Impacts of River Nile Pollution: Bioaccumulation, Biochemical and Tissues Biomarkers," Journal of Environmental Protection, Vol. 3 No. 8A, 2012, pp. 966-977. doi: 10.4236/jep.2012.328112.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. G. M. Osman and W. Kloas, “Water Quality and Heavy Metal Monitoring in Water, Sediments and Tissues of the African Catfish Clarias gariepinus (Burchell, 1822) from the River Nile, Egypt,” Journal of Environmental Protection, Vol. 1, 2010, pp. 389-400. HUdoi:10.4236/jep.2010.14045U
[2] A. G. M. Osman, A. M. Abd El Reheem, M. A. Moustafa, U. M. Mahmoud, K. Y. Abuel-Fadl and W. Kloas, “In Situ Evaluation of the Genotoxic Potential of the River Nile: I. Micronucleus and Nuclear Lesion Tests of Erythrocytes of Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822),” Toxicological and Environmental Chemistry, Vol. 93, No. 5, 2011, pp. 1002-1017. HUdoi:10.1080/02772248.2011.564496U
[3] R. Tejeda-Vera, E. Lopez-Lopez and J. E. Sedeno-Diaz, “Biomarkers and Bioindicators of the Health Condition of Ameca splendens and Goodea atripinnis (Pisces: Goodeaidae) in the Ameca River, Mexico,” Environment International, Vol. 33, No. 4, 2007, pp. 521-531. HUdoi:10.1016/j.envint.2006.11.018U
[4] H. I. Falfushynska and O. B. Stolyar, “Responses of Biochemical Markers in Carp Cyprinus carpio from Two Field Sites in Western Ukraine,” Ecotoxicology and Environmental Safety, Vol. 72, No. 3, 2009, pp. 729-736. HUdoi:10.1016/j.ecoenv.2008.04.006U
[5] G. Ambedkar and M. Muniyan, “Bioaccumulation of Some Heavy Metals in the Selected Five Freshwater Fish from Kollidam River, Tamilnadu, India,” Advances in Applied Science Research, Vol. 2, No. 5, 2011, pp. 221- 225.
[6] A. A. Otitoloju, “Evaluation of the Joint-Action Toxicity of Binary Mixtures of Heavy Metals against the Mangrove Periwinkle Tympanotonus fuscatus var radula (L.),” Ecotoxicology and Environmental Safety, Vol. 53, No. 3, 2002, pp. 404-415. HUdoi:10.1016/S0147-6513(02)00032-5U
[7] N. Barak and C. Mason, “Mercury, Cadmium and Lead in Eels and Roach: The Effects of Size, Season and Locality on Metal Concentrations in Flesh and Liver,” Science of the Total Environment, Vol. 92, 1990, pp. 249-256. HUdoi:10.1016/0048-9697(90)90334-QU
[8] I. Haluzova, H. Modra, J. Blahova, M. Havelkova, Z. Siroka and Z. Svobodova, “Biochemical Markers of Contamination in Fish Toxicity Tests,” Interdisciplinary Toxicology, Vol. 4, No. 2, 2011, pp. 85-89.
[9] A. G. Heath, “Water Pollution and Fish Physiology,” Lewis Publs., Boca Raton, 1996.
[10] P. P. Pandolfi, F. Sonati, R. Rivi, P. Mason, F. Grosveld and L. Luzzatto, “Targeted Disruption of the Housekeeping Gene Encoding Glucose 6-Phosphate Dehydrogenase (G6PD): G6PD Is Dispensable for Pentose Synthesis But Essential for Defense against Oxidative Stress,” The EMBO Journal, Vol. 14, No. 21, 1995, pp. 5209-5215.
[11] P. C. Das, S. Ayyappan, B. K. Das and J. K. Jena, “Nitrite Toxicity in Indian Major Carps: Sublethal Effect on Selected Enzymes in Fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala,” Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, Vol. 138, No. 1, 2004, pp. 3-10.
[12] P. C. Das, S. Ayyappan, J. K. Jena and B. K. Das, “Acute Toxicity of Ammonia and Its Sub-Lethal Effects on Selected Haematological and Enzymatic Parameters of Mrigal, Cirrhinus mrigala (Hamilton),” Aquaculture Research, Vol. 35, No. 2, 2004, pp. 134-143. HUdoi:10.1111/j.1365-2109.2004.00994.xU
[13] S. M. Long, K. J. Ryder and D. A. Holdway, “The Use of Respiratory Enzymes as Biomarkers of Petroleum Hydrocarbon Exposure in Mytilus edulis Planulatus,” Ecotoxicology and Environmental Safety, Vol. 55, No. 3, 2003, pp. 261-270. HUdoi:10.1016/S0147-6513(02)00137-9U
[14] D. Bernet, H. Schmidt, W. Meier, P. Burkhardt-Holm and T. Wahli, “Histopathology in Fish: Proposal for a Protocol to Assess Aquatic Pollution,” Journal of Fish Diseases, Vol. 22, No. 1, 1999, pp. 25-34. HUdoi:10.1046/j.1365-2761.1999.00134.xU
[15] S. J. Teh, S. M. Adams and D. E. Hintonm, “Histopathologic Biomarkers in Feral Freshwater Fish Populations Exposed to Different Types of Contaminant Stress,” Aquatic Toxicology, Vol. 37, 1997, pp. 51-70. HUdoi:10.1016/S0166-445X(96)00808-9U
[16] S. J. The, S. L. Clark, C. L. Brown, S. N. Luoma and D. E. Hinton, “Enzymatic and Histopathologic Biomarkers as Indicators of Contaminant Exposure and Effect in Asian Clam (Potamocorbula amurensis),” Biomarkers, Vol. 4, No. 6, 1999, pp. 497-509. HUdoi:10.1080/135475099230660U
[17] H. Moeller, “A Critical Review on the Role of Pollution as a Cause of Fish Diseases,” In: A. E. Ellis, Ed., Fish and Shellfish Pathology, European Association of Fish Pathology, Academic Press, London, 1985, pp. 169-182.
[18] A. Figueiredo-Fernandes, J. V. Ferreira-Cardoso, S. Garcia-Santos, S. M. Monteiro, J. Carrola, P. Matos and A. Fontainhas-Fernandes, “Histopathological changes in Liver and Gill Epithelium of Nile Tilapia, Oreochromis niloticus, Exposed to Waterborne Copper,” Pesquisa Veterinaria Brasileira, Vol. 27, No. 3, 2007, pp. 103-109. HUdoi:10.1590/S0100-736X2007000300004U
[19] A. Figueiredo-Fernandes, A. Fontainhas-Fernandes, R. Monteiro, M. A. Reis-Henriques and E. Rocha, “Effects of the Fungicide Mancozeb on Liver Structure of Nile Tilapia, Oreochromis niloticus: Assessment and Quantification of Induced Cytological Changes Using Qualitative Histopathology and the Stereological Point-Sampled Intercept Method,” Bulletin of environmental contamination and toxicology, Vol. 76, No. 2, 2006, pp. 249-255. HUdoi:10.1007/s00128-006-0914-1U
[20] A. G. M. Osman, E. Ali, M. Hashem, M. Mostafa and I. Mekkawy, “Genotoxicity of Two Pathogenic Strains of Zoosporic Fungi (Achlya klebsiana and Aphanomyces laevis) on Erythrocytes of Nile Tilapia Oreochromis niloticus niloticus,” Ecotoxicology and environmental safety, Vol. 73, No. 1, 2010, pp. 24-31. HUdoi:10.1016/j.ecoenv.2009.08.021U
[21] B. K. M. Gadagbui, M. Addy and A. Goksoyr, “Species Characteristics of Hepatic Biotransformation Enzymes in two Tropical Freshwater Teleosts, Tilapia (Oreochromis niloticus) and Mudfish (Clarias anguillaris),” Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology, Vol. 114, No. 3, 1996, pp. 201- 211.
[22] A. G. M. Osman, A. M. Abd El Reheem, K. Y. AbuelFadl and A. G. GadEl-Rab, “Enzymatic and Histopathologic Biomarkers as Indicators of Aquatic Pollution in Fishes,” Natural Science, Vol. 2, No. 11, 2010, pp. 1302- 1311. HUdoi:10.4236/ns.2010.211158U
[23] A. G. Osman, K. Y. Abuel-Fadl and W. Kloas, “In Situ Evaluation of the Genotoxic Potential of the River Nile: II. Detection of DNA Strand-Breakage and Apoptosis in Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822),” Mutation Research, Vol. 747, 2012, pp. 14-21. HUdoi:10.1016/j.mrgentox.2012.02.013U
[24] APHA, “Standard Methods for the Examination of Water & Wastewater,” Amer Public Health Assn, 2005.
[25] I. Hardewig, H. O. P?rtner and P. van Dijk, “How Does the Cold Stenothermal Gadoid Lota lota Survive High Water Temperatures during Summer?” Journal of Comparative Physiology. B, Biochemical, Systemic and Environmental Physiology, Vol. 174, No. 2, 2004, pp. 149- 156. HUdoi:10.1007/s00360-003-0399-8U
[26] A. G. M. Osman, I. A. A. Mekkawy, J. Verreth and F. Kirschbaum, “Effects of Lead Nitrate on the Activity of Metabolic Enzymes during Early Developmental Stages of the African Catfish Clarias gariepinus (Burchell, 1822),” Fish Physiology and Biochemistry, Vol. 33, 2007, pp. 1-13. HUdoi:10.1007/s10695-006-9111-8U
[27] J. D. Bancroft and A. Stevens, “Theory and Practice of Histological Techniques,” 4th Edition, Churchill Livingstone, New York, 1996.
[28] SPSS, “SPSS-Inc. for Windows Release,” Vol. 10, Chicago, 1998.
[29] Statistica, “StatSoft-Inc. for Windows Release, USA,” 2007.
[30] M. Javed, “Heavy Metal Contamination of Freshwater Fish and Bed Sediments in the River Ravi Stretch and related Tributaries,” Pakistan Journal of Biological Sciences, Vol. 8, No. 10, 2005, pp. 1337-1341. HUdoi:10.3923/pjbs.2005.1337.1341U
[31] H. Karadede-Akin and E. Unlü, “Heavy Metal Concentrations in Water, Sediment, Fish and Some Benthic Organisms from Tigris River, Turkey,” Environmental Monitoring and Assessment, Vol. 131, No. 1-3, 2007, pp. 323-337. HUdoi:10.1007/s10661-006-9478-0U
[32] M. Bahnasawy, A. A. Khidr and N. Dheina, “Seasonal Variations of Heavy Metals Concentrations in Mullet, Mugil Cephalus and Liza Ramada (Mugilidae) from Lake Manzala, Egypt,” Applied Sciences Research, Vol. 5, No. 7, 2009, pp. 845-852.
[33] L. A. Woodward, M. Mulvey and M. C. Newman, “Mercury Contamination and Population-Level Responses in Chironomids: Can Allozyme Polymorphism Indicate Exposure?” Environmental Toxicology and Chemistry, Vol. 15, No. 8, 1996, pp. 1309-1316. HUdoi:10.1002/etc.5620150808U
[34] A. M. Yacoub, “Study on Some Heavy Metals Accumulated in Some Organs of Three River Nile Fishes from Cairo and Kalubia Governorates,” African Journal of Biological Science, Vol. 3, 2007, pp. 9-21.
[35] A. El-Naggar, S. Mahmoud and S. Tayel, “Bioaccumulation of Some Heavy Metals and Histopathological Alterations in Liver of Oreochromis niloticus in Relation to Water Quality at Different Localities along the River Nile, Egypt,” World Journal of Fish and Marine Sciences, Vol. 1, No. 2, 2009, pp. 105-114.
[36] J. A. McCarter and M. Roch, “Hepatic Metallothionein and Resistance to Copper in Juvenile Coho Salmon,” Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, Vol. 74, No. 1, 1983, pp. 133-137. HUdoi:10.1016/0742-8413(83)90164-0U
[37] L. Vigano, A. Arillo, F. Melodia, P. Arlati and C. Monti, “Biomarker Responses in Cyprinids of the Middle Stretch of the River Po, Italy,” Environmental Toxicology and Chemistry, Vol. 17, No. 3, 1998, pp. 404-411. HUdoi:10.1002/etc.5620170309U
[38] V. Lenartova, K. Holovska, J. R. Pedrajas, E. MartinezLara, J. Peinado, J. LopezBarea, I. Rosival and P. Kosuth, “Antioxidant and Detoxifying Fish Enzymes as Biomarkers of River Pollution,” Biomarkers, Vol. 2, No. 4, 1997, pp. 247-252. HUdoi:10.1080/135475097231625U
[39] B. Korsgaard, “Metabolic Changes Associated with 17alpha-thinylestradiol Exposure in the Pregnant Teleost Zoarces Viviparous,” Electric Journal of Ichthyology, Vol. 1, 2005, pp. 10-20.
[40] F. Bucher, R. Hofer, G. Krumschnabel and C. Doblander, “Doblander in the Prooxidant-Antioxidant Balances in the Liver of Bullhead (Cottus gobio) Exposed to Treated Paper Mill Effluents,” Chemosphere, Vol. 27, 1993, pp. 1329-1338. HUdoi:10.1016/0045-6535(93)90227-VU
[41] R. Reiter, L. Tang, J. J. Garcia and A. MunozHoyos, “Pharmacological Actions of Melatonin in Oxygen Radical Pathophysiology,” Life Sciences, Vol. 60, No. 25, 1997, pp. 2255-2271. HUdoi:10.1016/S0024-3205(97)00030-1U
[42] M. M. Gagnon and D. A. Holdway, “Metabolic Enzyme Activities in Fish Gills as Biomarkers of Exposure to Petroleum Hydrocarbons,” Ecotoxicology and Environmental Safety, Vol. 44, No. 1, 1999, pp. 92-99. HUdoi:10.1006/eesa.1999.1804U
[43] A. R. Chourpagar and G. K. Kulkarni, “Toxic Effect of Copper Sulphate on Lactate Dehydrogenase Activity in a Freshwater Crab, Barytelphusa cunicularis (Westwood),” World Journal of Zoology, Vol. 4, No. 3, 2009, pp. 180- 183.
[44] A. Cohen, M. M. Gagnon and D. Nugegoda, “Alterations of Metabolic Enzymes in Australian Bass, Macquaria Novemaculeata, after Exposure to Petroleum Hydrocarbons,” Archives of Environmental Contamination and Toxicology, Vol. 49, No. 2, 2005, pp. 200-205. doi:10.1007/s00244-004-0174-1U
[45] Z. Khoshnood, S. Khodabandeh, S. Mosafer and R. Khoshnood, “Effects of Cortisol on Gill Chloride Cells in Persian Sturgeon, Acipenser persicus, Fry,” Yakhteh, Vol. 11, No. 4, 2010, pp. 424-431.
[46] A. Parvathi, P. Sivakumari and C. Sarasu, “Effect of Chromium on Histological Alteration of Gill, Liver and Kindey of Freshwater Teleost, Cyprinus caprio (L.),” Journal of Fisheries International, Vol. 6, No. 1, 2011, pp. 1-5. HUdoi:10.3923/jfish.2011.1.5U
[47] E. Olojo, K. Olurin, G. Mbaka and A. Oluwemimo, “Histopathology of the Gill and Liver Tissues of the African Catfish Clarias gariepinus Exposed to Lead,” African Journal of Biotechnology, Vol. 4, No. 1, 2005, pp. 117-122.
[48] C. Fernandes, A. Fontainhas-Fernandes, E. Rocha and M. A. Salgado, “Monitoring Pollution in Esmoriz-Paramos Lagoon, Portugal: Liver Histological and Biochemical Effects in Liza saliens,” Environmental Monitoring and Assessment, Vol. 145, No. 1-3, 2008, pp. 315-322. HUdoi:10.1007/s10661-007-0041-4U
[49] W. H. Gingerich, “Hepatic Toxicology of Fishes,” In: L. J. Weber, Ed., Aquatic Toxicology, Raven Press, New York, 1982, pp. 55-105.
[50] P. Laurent and S. F. Perry, “Environmental-Effects on Fish Gill Morphology,” Physiological Zoology, Vol. 64, No. 1, 1991, pp. 4-25.
[51] D. van Heerden, A. Vosloo and M. Nikinmaa, “Effects of Short-Term Copper Exposure on Gill Structure, Metallothionein and Hypoxia-Inducible Factor-1alpha (HIF-1 alpha) Levels in Rainbow Trout (Oncorhynchus mykiss),” Aquatic Toxicology, Vol. 69, No. 3, 2004, pp. 271-280. doi:10.1016/j.aquatox.2004.06.002U
[52] E. Fanta, F. S. A. Rios, S. Romao, A. C. C. Vianna and S. Freiberger, “Histopathology of the Fish Corydoras paleatus Contaminated with Sublethal Levels of Organophosphorus in Water and Food,” Ecotoxicology and environmental safety, Vol. 54, No. 2, 2003, pp. 119-130. Hdoi:10.1016/S0147-6513(02)00044-1U
[53] C. B. R. Martinez, M. Y. Nagae, C. T. B. V. Zaia and D. A. M. Zaia, “Acute Morphological and Physiological Effects of Lead in the Neotropical Fish Prochilodus lineatus,” Brazilian Journal of Biology = Revista brasleira de biologia, Vol. 64, No. 4, 2004, pp. 797-807.
[54] R. Triebskorn, I. Telcean, H. Casper, A. Farkas, C. Sandu, G. Stan, O. Col?rescu, T. Dori and H.-R. K?hler, “Monitoring Pollution in River Mure?, Romania, Part II: Metal Accumulation and Histopathology in Fish,” Environmental Monitoring and Assessment, Vol. 141, No. 1-3, 2008, pp. 177-188. HUdoi:10.1007/s10661-007-9886-9U

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.