Share This Article:

Study of Structural and Electrical Properties of a New Type of Complex Tungsten Bronze Electroceramics; Li2Pb2Y2W2Ti4V4O30

Abstract Full-Text HTML XML Download Download as PDF (Size:704KB) PP. 870-880
DOI: 10.4236/jmp.2012.38114    3,908 Downloads   6,724 Views   Citations


A polycrystalline ceramic, a new type of complex tungsten bronze type structure, having a general formula Li2Pb2Y2W2Ti4V4O30 has been prepared relatively at low temperature using a mixedoxide technique after optimizing the calcination conditions on the basis of thermal analysis. The material has been characterized by different experimental techniques. The formation of the material under the reported conditions has been confirmed by an X-ray diffraction technique. A preliminary structural analysis of the material showed the formation of single phase compound in an orthorhombic crystal structure at room temperature. Studies of dielectric properties (εr, tanδ ) of the above compound as a function of temperature at different frequencies exhibit a ferroelectric phase transition of diffuse type. The electrical properties of the material have been studied using ac impedance spectroscopy technique. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructure. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The bulk resistance, evaluated from complex impedance spectra, is found to decrease with rise in temperature, exhibiting a typical negative temperature co-efficient of resistance (NTCR) – type behavior similar to that of semiconductors. A small contribution of grain boundary effect was also observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The ac conductivity spectra exhibit a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Das, B. Pati, B. Sutar and R. Choudhury, "Study of Structural and Electrical Properties of a New Type of Complex Tungsten Bronze Electroceramics; Li2Pb2Y2W2Ti4V4O30," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 870-880. doi: 10.4236/jmp.2012.38114.


[1] K. Uchino, “Ferroelectric Devices,” Marcel Dekker Inc., New York, 2000.
[2] M. E. Lines and A. M. Glass, “Principle and Application of Ferroelectrics and Related Materials,” Clarndon Press, Oxford, 1977.
[3] G. Goodman, “Ferroelectric Properties of Lead Metaniobate,” Journal of the American Ceramic Society, Vol. 36, No. 11, 1953, pp. 368-372. doi:10.1111/j.1151-2916.1953.tb12820.x
[4] M. H. Francombe and B. Lewis, “Structural, Dielectric and Optical Properties of Ferroelectric Lead Metanio- bate,” Acta Crystallographica, Vol. 11, 1958, pp. 696-703. doi:10.1107/S0365110X58001882
[5] G. A. Smolenskii and A. I. Agranovskaya, Doklady Akademii Nauk SSSR, Vol. 97, 1954, p. 237.
[6] A. M. Glass, “Ferroelectric Sr1-xBaxNb2O6 as a Fast and Sensitive Detector of Infrared Radiation,” Applied Phys- ics Letters, Vol. 13, No. 4, 1968, pp. 147-149. doi:10.1063/1.1652547
[7] S. Sakamoto and T. Yazaki, “Anomalous Electro-Optic Properties of Ferroelectric Strontium Barium Niobate and Their Device Applications,” Applied Physics Letters, Vol. 22, No. 9, 1973, pp. 429-431. doi:10.1063/1.1654700
[8] J. M. Haussone, G. Desgardin, A. Herve and B. Boufrou, “Dielectric Ceramics with Relaxors and a Tetragonal Tungsten Bronze,” Journal of the European Ceramic So- ciety, Vol. 10, No. 6, 1992, pp. 437-452. doi:10.1016/0955-2219(92)90019-A
[9] H. El Alaoui-Belghiti, R. Von der Muhll, A. Simon, M. Elaatmani and J. Ravez, “Relaxor or Classical Ferroelec- tric Behavior in Ceramics with Composition Sr2?xA1+xNb5 O15?xFx (A = Na, K),” Materials Letters, Vol. 55, No. 3, 2002, pp. 138-144. doi:10.1016/S0167-577X(01)00636-X
[10] X. M. Chen, Z. Y. Xu and J. Li, “Dielectric Ceramics in the BaO-Sm2O3-TiO2-Ta2O5 Quaternary System,” Journal of Materials Research, Vol. 15, No. 1, 2000, pp. 125- 129. doi:10.1557/JMR.2000.0021
[11] X. L. Zhu, X. M. Chen, X. Q. Liu and Y. Yuan, “Dielec- tric Characteristics and Diffuse Ferroelectric Phase Tran- sition in Sr4La2Ti4Nb6O30 Tungsten Bronze Ceramics,” Journal of Materials Research, Vol. 21, No. 7, 2006, pp. 1787-1792. doi:10.1557/jmr.2006.0201
[12] C. Huang, A. S. Bhalla and R. Guo, “Measurement of Microwave Electro-Optic Coefficient in Sr0.61Ba0.39Nb2O6 Crystal Fiber,” Applied Physics Letters, Vol. 86, No. 21, 2005, Article ID: 211907. doi:10.1063/1.1937997
[13] K. S. Rao and N. V. Nath, “Influence of Rare-Earth Ion on Piezoelectric and Pyroelectric Properties of PBN System,” Ferroelectrics, Vol. 325, No. 1, 2005, pp. 15-24. doi:10.1080/00150190500326605
[14] W. Jiang, W. Cao, X. Yi and H. Chen, Journal of Applied Physics, Vol. 97, 2005.
[15] M. O. Ramirez, D. Jaque, L. E. Bausa, J. S. Garcia and A. A. Kaminskii, Physical Review Letters, Vol. 95, 2005.
[16] E. L. Venturini, E. G. Spencer and A. A. Ballman, “Elasto-Optic Properties of Bi12GeO20, Bi12SiO20, and SrxBa1?x Nb2O6,” Journal of Applied Physics, Vol. 40, No. 4, 1969, pp. 1622-1625. doi:10.1063/1.1657822
[17] M. Lee and R. S. Feigelson, “Effects of Reduction Treatment on the Photorefractive Properties of Pb0.5Ba0.5Nb2 O6,” Optical Materials, Vol. 21, No. 4, 2003, pp. 759- 764. doi:10.1016/S0925-3467(02)00096-4
[18] L. G. Van Uitert, S. Singh and H. J. Leninstein, “A New and Stable Nonlinear Optical Material,” Applied Physics Letters, Vol. 11, No. 5, 1967, pp. 161-163. doi:10.1063/1.1755079
[19] J. J. Rubin, L. G. Van Uitert and H. J. Levinstein, “The Growth of Single Crystal Niobates for Electro-Optic and Non-Linear Applications,” Journal of Crystal Growth, Vol. 1, No. 5, 1967, pp. 315-317. doi:10.1016/0022-0248(67)90039-5
[20] R. R. Neurgaonkar, J. G. Nelson and J. R. Oliver, “Piezo- electric and Ferroelectric Properties of La-Modified and Unmodified Tungsten Bronze Pb0.6Ba0.4Nb2O6 Dense Ce- ramics,” Materials Research Bulletin, Vol. 26, No. 8, 1991, pp. 771-777. doi:10.1016/0025-5408(91)90066-U
[21] P. B. Jamieson, S. C. Abrahams and L. Bernstein, “Ferroelectric Tungsten Bronze-Type Crystal Structures. I. Bar- nium Strontium Niobate Ba0.27Sr0.75Nb2O5.78,” Journal of Chemical Physicss, Vol. 48, No. 11, 1968, pp. 5048-5058. doi:10.1063/1.1668176
[22] R. R. Neurgaonkar, J. G. Nelson and J. R. Oliver, “Ferro- electric and Structural Properties of the Tungsten Bronze System K2Ln3+Nb5O15, Ln = La to Lu,” Materials Re- search Bulletin, Vol. 25, No. 8, 1990, pp. 959-970. doi:10.1016/0025-5408(90)90002-J
[23] M. R. Raju and R. N. P. Choudhary, “Effect of Zr Sub- stitution on Structural, Dielectric and Electrical Properties of Sr5SmTi3Nb7O30 Ceramics,” Materials Chemistry and Physics, Vol. 99, No. 1, 2006, pp. 135-143. doi:10.1016/j.matchemphys.2005.09.084
[24] W. Chen, Y. Kinemuchi, K. Watari, T. Tamura and K. Miwa, “Preparation of Grain-Oriented Sr0.5Ba0.5Nb2O6 Ferroelectric Ceramics by Magnetic Alignment,” Journal of the American Ceramic Society, Vol. 89, No. 1, 2006, pp. 381-384. doi:10.1111/j.1551-2916.2005.00694.x
[25] J.-H. Ko, S. Kojima, S. G. Lushnikov, R. S. Katiyar, T.-H. Kim and J.-H. Ro, “Low-Temperature Transverse Dielec- tric and Pyroelectric Anomalies of Uniaxial Tungsten Bronze Crystals,” Journal of Applied Physics, Vol. 92, No. 3, 2002, pp. 1536-1543. doi:10.1063/1.1491995
[26] A. K. Singh, R. N. P. Choudhary, “Study of Ferroelectric Phase Transition in Pb3R3Ti5Nb5O30 (R = Rare Earth Ion) Ceramics,” Ferroelectrics, Vol. 325, No. 1, 2005, pp. 7-14. doi:10.1080/00150190500326522
[27] M.-S. Kim, J.-H. Lee, J.-J. Kim, H. Y. Lee and S.-H. Cho, “Microstructure Evolution and Dielectric Properties of Ba5-xNa2xNb10O30 Ceramics with Different Ba-Na Ra- tios,” Journal of Solid State Electrochemistry, Vol. 10, No. 1, 2006, pp. 18-23. doi:10.1007/s10008-005-0647-9
[28] L. Fang, H. Zhang, T. H. Huang, R. Z. Yuan and H. X. Liu, “Preparation, Structural, and Dielectric Properties of Ba5YZnM9O30 (M = Nb, Ta) Ceramics,” Journal of Materials Science, Vol. 40, No. 2, 2005, pp. 533-535. doi:10.1007/s10853-005-6122-2
[29] B. Behera, P. Nayak and R. N. P. Choudhary, “Structural, Dielectric and Electrical Properties of LiBa2X5O15 (X = Nb and Ta) Ceramics,” Materials Chemistry and Physics, Vol. 100, No. 10, 2006, pp. 138-141. doi:10.1016/j.matchemphys.2005.12.022
[30] P. R. Das, R. N. P. Choudhary and B. K. Samantray, “Diffuse Ferroelectric Phase Transition in Na2Pb2Sm2W2 Ti4Nb4O30 Ceramics,” Materials Chemistry and Physics, Vol. 101, No. 1, 2007, pp. 228-233. doi:10.1016/j.matchemphys.2006.04.005
[31] P. R. Das, R. N. P. Choudhary and B. K. Samantray, “Diffuse Ferroelectric Phase Transition in Na2Pb2Nd2W2 Ti4Nb4O30 Ceramic,” Journal of Alloys and Compounds, Vol. 448, No. 1-2, 2008, pp. 32-37. doi:10.1016/j.jallcom.2006.10.090
[32] P. R. Das, R. N. P. Choudhary and B. K. Samantray, “Diffuse Phase Transition in Na2Pb2R2W2Ti4V4O30 (R= Gd, Eu) Ferroelectric Ceramics,” Journal of Physics and Chemistry of Solids, Vol. 68, No. 4, 2007, pp. 516-522. doi:10.1016/j.jpcs.2007.01.015
[33] P. R. Das, B. Pati, B. C. Sutar and R. N. P. Choudhary, Advanced Materials Letters, 2011, in Press.
[34] P. Ganguli and A. K. Jha, “Investigations of Structural, Dielectric and Electrical Behaviour of Calcium Substi- tuted Ba5NdTi3Nb7O30 Ferroelectric Ceramics,” Integrated Ferroelectrics, Vol. 115, No. 1, 2010, pp. 149-156. doi:10.1080/10584587.2010.488566
[35] P. Ganguli and S. Devi and A. K. Jha, “Dielectric and Pyroelectric Studies of Tungsten-Bronze Structured Ba5 SmTi3Nb7O30 Ferroelectric Ceramics,” Ferroelectrics, Vol. 381, No. 1, 2009, pp. 111-119. doi:10.1080/00150190902869772
[36] P. Ganguli and A. K. Jha, “Synthesis and Characteriza- tion of Tungsten-Bronze Structured Nanocrystalline Ba5 SmTi3Nb7O30 Ferroelectric Ceramics by High-Energy Ball Milling,” Journal of the American Ceramic Society, Vol. 94, No. 6, 2011, pp. 1725-1730. doi:10.1111/j.1551-2916.2010.04321.x
[37] D. K. Pradhan, B. Behera and P. R. Das, Journal of Materials Science, 2011, in Press.
[38] G. Burns and F. H. Dacol, “Glassy Polarization Behavior in K2Sr4 (NbO3)10-Type Ferroelectrics,” Physical Review B, Vol. 40, No. 7, 1984, pp. 4012-4013. doi:10.1103/PhysRevB.30.4012
[39] A. K. Singh and R. N. P. Choudhary, “Diffuse Ferroelectrics Phase Transition in Pb5RTi3Nb7O30 (R=Eu and Gd),” Materials Letters, Vol. 57, No. 24-25, 2003, pp. 3722-3728. doi:10.1016/S0167-577X(03)00169-1
[40] J. Ravez, H. El Alaoui-Belghiti, A. Simon and M. Elaat- mani, “Relations between Ionic Order or Disorder and Classical or Relaxor Ferroelectric Behaviour in Two Lead-Free TKWB-Type Ceramics,” Materials Letters, Vol. 47, No. 3, 2001, pp. 159-164. doi:10.1016/S0167-577X(00)00228-7
[41] Y. H. Xu, Z. Li, W. Li and H. Wang, “Phase transition of some ferroelectric niobate crystals with Tungsten-Bronze Structure at Low Temperatures,” Physical Review B, Vol. 40, No. 17, 1989, pp. 11902-11908. doi:10.1103/PhysRevB.40.11902
[42] E. Wu, POWD, “An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver. 2.1,” School of Physical Sciences, Flinders University South Bedford Park, Australia.
[43] J. C. Anderson, “Dielectrics,” Chapman & Hall, London, 1964.
[44] B. Behera, P. Nayak and R. N. P. Choudhary, “Structural and Impedance Properties of KBa2V5O15 Ceramics,” Materials Research Bulletin, Vol. 43, No. 5, 2008, pp. 401- 410. doi:10.1016/j.materresbull.2007.02.042
[45] A. K. Jonscher, “The ‘Universal’ Dielectric Response,” Nature, Vol. 267, 1977, pp. 673-679. doi:10.1038/267673a0
[46] S. Sen and R. N. P. Choudhary, “Impedance Studies of Sr Modified BaZr0.05Ti0.95O3 Ceramics,” Materials Chemistry and Physics, Vol. 87, No. 2-3, 2004, pp. 256-263. doi:10.1016/j.matchemphys.2004.03.005
[47] S. Brahma, R. N. P. Choudhary and A. K. Thakur, “AC Impedance Analysis of LaLiMo2O8 Electroceramics,” Physica B: Condensed Matter, Vol. 355, No. 1-4, 2005, pp. 188-201. doi:10.1016/j.physb.2004.10.091
[48] J. R. Macdonald, “Impedance Spectroscopy Emphasizing Solid Materials and Systems,” Wiley, New York, 1987.
[49] J. Suchanicz, “The Low-Frequency Dielectric Relaxation Na0.5Bi0.5TiO3 Ceramics,” Materials Science and Engi- neering: B, Vol. 55, No. 1-2, 1998, pp. 114-118. doi:10.1016/S0921-5107(98)00188-3
[50] C. K. Suman, K. Prasad and R. N. P. Choudhary, “Complex Impedance Studies on Tungsten-Bronze Electroce- ramic: Pb2Bi3LaTi5O18,” Journal of Materials Science, Vol. 41, No. 2, 2006, pp. 369-375. doi:10.1007/s10853-005-2620-5
[51] S. Chatterjee, P. K. Mahapatra, R. N. P. Choudhary and A. K. Thakur, “Complex Impedance Studies of Sodium Pyrotungstate—Na2W2O7,” Physica Status Solidi (a), Vol. 201, No. 3, 2004, pp. 588-595. doi:10.1002/pssa.200306741
[52] F. Borsa, D. R. Torgeson, S. W. Martin and H. K. Patel, “Relaxation and fluctuations in glassy fast-ion conductors: Wide-Frequency-Range NMR and Conductivity Measurements,” Physical Review B, Vol. 46, No. 2, 1992, pp. 795-800. doi:10.1103/PhysRevB.46.795
[53] V. Provenzano, L. P. Boesch, V. Volterra, C. T. Moynihan and P. B. Macedo, “Electrical Relaxation in Na2O?3SiO2 Glass,” Journal of the American Ceramic Society, Vol. 55, No. 10, 1972, pp. 492-496. doi:10.1111/j.1151-2916.1972.tb13413.x
[54] H. Jain and C. H. Hsieh, “‘Window’ Effect in the Analy- sis of Frequency Dependence of Ionic Conductivity,” Journal of Non-Crystalline Solids, Vol. 172-174, 1994, pp. 1408-1412. doi:10.1016/0022-3093(94)90669-6
[55] I. M. Hodge, M. D. Ingram and A. R. West, “A New Method for Analysing the a.c. Behaviour of Polycrystal- line Solid Electrolytes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 58, No. 2, 1975, pp. 429-432. doi:10.1016/S0022-0728(75)80102-1
[56] P. B. Macedo, C. T. Moynihan and R. Bose, Physics and Chemistry of Glasses, Vol. 13, 1972, p. 171.
[57] K. Funke, “Jump Relaxation in Solid Electrolytes,” Progress in Solid State Chemistry, Vol. 22, No. 2, 1993, pp. 111-195. doi:10.1016/0079-6786(93)90002-9
[58] R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla and R. S. Katiyar, “Effect of La Substitution on Structural and Electrical Properties of Ba(Fe2/3W1/3)O3 Nanoceramics,” Journal of Materials Science, Vol. 42, No. 17, 2007, pp. 7423-7432. doi:10.1007/s10853-007-1835-z
[59] A. K. Joncher, Physics of Thin Films, Vol. 11, 1980, p. 232

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.