An Analytical Model of the Power Law Distributions in the Complex Network


It is known that complex networks in nature exhibit some significant statistical features. We notice power law distributions which frequently emerge with respect to network structures of various quantities. One example is the scale-freeness which is described by the degree distribution in the power law shape. In this paper, within an analytical approach, we investigate the analytical conditions under which the distribution is reduced to the power law. We show that power law distributions are obtained without introducing conditions specific to each system or variable. Conversely, if we demand no special condition to a distribution, it is imposed to follow the power law. This result explains the universality and the ubiquitous presence of the power law distributions in complex networks.

Share and Cite:

K. Takagi, "An Analytical Model of the Power Law Distributions in the Complex Network," World Journal of Mechanics, Vol. 2 No. 4, 2012, pp. 224-227. doi: 10.4236/wjm.2012.24027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D.J. Watts and S.H. Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, Vol. 393, 440-442 (1998). doi: 10.1038/30918
[2] S. H. Strogatz, Nature “Exploring complex networks”, Vol. 410, 268-276 (2001). doi: 10.1038/35065725
[3] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random Networks”, Science, Vol. 286, no. 5439, 1999, pp. 509-512. doi:10.1126/science.286.5439.509
[4] A.-L. Barabasi, R. Albert, and H. Jeong, “Mean-Field Theory for Scale-Free Random Networks”, Physica A, Vol. 272, Issues 1-2, 1999, pp. 173-187. doi:10.1016/S0378-4371(99)00291-5
[5] P. L. Kra-pivsky, S. Redner and F. Leyvraz, “Connectivity of Growing Random Networks”, Physical Review Letters, Vol. 85 Issue 21 pp. 4629-4632. doi:10.1103/PhysRevLett.85.4629
[6] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, “Structure of Growing Networks with Preferential Linking”, Physical Review Letters, Vol. 85 Issue 21 2000, pp. 4633-4636. doi:10.1103/PhysRevLett.85.4633
[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph structure in the Web”, Comput. Netw. Vol. 33, 309-320. (2000). doi:10.1016/S1389-1286(00)00083-9
[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the Internet topology”, ACM SIGCOMM Comput. Commun. Rev. Vol. 29, 251-262 (1999). doi:10.1145/316194.316229
[9] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks”, Advances in physics, Vol. 51 issue (4), 2002, pp. 1079-1187. doi:10.1080/00018730110112519
[10] R. Albert and A.-L. Barabasi, “Statistical Mechanics of Complex Networks”, Reviews of Modern Physics, Vol. 74, 2002, pp. 47-97. doi:10.1103/RevModPhys.74.47
[11] M. E. J. Newman, “The Structure and Function of Complex Networks”, SIAM Review, Vol. 45, pp. 167-256 (2003). doi:10.1137/S003614450342480
[12] R. Albert, H. Jeong, A.-L. Barabasi, “Internet: Diameter of the World-Wide Web”, Nature Vol.401, pp. 130-131 (1999) doi:10.1038/43601
[13] M. E. J. Newman, “Scientific Collaboration Networks. I. Network Construction and Fundamental Results”, Physical Review E Vol.64 2001, 016131. doi:10.1103/PhysRevE.64.016131
[14] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabasi, “The Large-Scale Organization of Metabolic Networks”, Nature Vol. 407, 2000, pp. 651-654. doi:10.1038/35036627
[15] H. Jeong, S.Mason, A.-L. Barabasi, Z. N. Oltvai, “Lethality and Centrality in Protein Networks”, Nature, Vol. 411, 2001, pp. 41-42. doi:10.1038/35075138
[16] O. Sporns, D.R. Chialvo, M. Kaiser and C.C. Hilgetag, “Organization, development and function of complex brain networks”, Trends Cogn. Sci. Vol. 8, Issue 9, pp.418-425 (2004). doi: 10.1016/j.tics.2004.07.008
[17] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems”, Nature Reviews Neuroscience, Vol.10 pp. 186-198 (2009). doi: 10.1038/nrn2575
[18] J. A. Dunne, R. J. Williams, and N. D. Martinez, “Food-web structure and network theory: The role of connectance and size”, Proc. Nat. Acad. Sci., 99, 12917-12922 (2002). doi: 10.1073/pnas.192407699
[19] M. C. Gonzalez, C. A. Hidalgo and A.-L. Barab’asi, “Understanding individual human mobility patterns”, Nature Vol. 453, pp. 779-782 (2008) doi: 10.1038/nature06958
[20] A. Vazquez, R. Pastor-Satorras, A. Vespignani, “Large-scale topological and dynamical properties of the Internet”, Phys. Rev. E 65, 66130 (2002). doi:10.1103/PhysRevE.65.066130
[21] R. Albert, I. Albert and G. L. Nakarado, “Structural vulnerability of the North American power grid”, Phys. Rev. E 69, 025103(R) (2004). doi:10.1103/PhysRevE.69.025103
[22] R. Guimer’a, S. Mossa, A. Turtschi, and L. A. N. Amaral, “The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles”, Proc. Natl. Acad. Sci., USA, Vol. 102, pp. 7794-7799 (2005). doi: 10.1073/pnas.0407994102
[23] K. Takagi, “Scale Free Distribution in an Analytical Approach”, Physica A, Vol. 389, Issue 10, 2010, pp. 2143-2146. doi:10.1016/j.physa.2010.01.034
[24] K. Takagi, “An Analytical Approach for Degree Correlations in Complex Network” World Journal of Mechanics, Vol.02, No.02, pp.171-174 (2012) doi: 10.4236/wjm.2012.23020
[25] P. Erdos and A. Renyi, “On random graphs,” Publicationes Mathematicae 6, 290-297 (1959).
[26] P. Erdos and A. Renyi, “On the evolution of random graphs,” Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17-61 (1960).
[27] P. Erdos and A. Renyi, “On the strength of connectedness of a randomgraph,” Acta Mathematica Scientia Hungary 12, 261-267 (1961).

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.