The Theory of Vector-Valued Function in Locally Convex Space

DOI: 10.4236/am.2012.38133   PDF   HTML     5,697 Downloads   7,691 Views  

Abstract

In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended to the locally convex space.

Share and Cite:

L. Ma, "The Theory of Vector-Valued Function in Locally Convex Space," Applied Mathematics, Vol. 3 No. 8, 2012, pp. 903-906. doi: 10.4236/am.2012.38133.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. V. Ahlfors, “Complex Analysis,” McGraw-Hill, New York, 2004.
[2] S. Lang, “Complex Analysis,” Springer-Verlag, New York, 2003.
[3] C. G. Hu, “Vector-Valued Function and Its Applications,” Kluwer Academic Publishers, Dordrecht, Boston, London, 1992.
[4] C. P. Xie and Y. S. Zhao, “Basic Boundary Value Problem for Complex Harmonic Functions,” Beijing Math, 1997, Vol. 3, No. 1, pp. 20-35.
[5] Z. Zhen, “Schwarz’s Problems for Some Complex Partial Differential Equations of Second Order,” Beijing Math, 1996, Vol. 2, No. 1, pp. 131-137.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.