Share This Article:

A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications

Abstract Full-Text HTML Download Download as PDF (Size:423KB) PP. 97-105
DOI: 10.4236/wet.2012.33016    6,597 Downloads   12,141 Views   Citations

ABSTRACT

This paper presents the design of a fully packaged 60 GHz wideband patch antenna incorporating an air cavity and a fused silica superstrate. Circular polarization (CP) is realized by introducing a diagonal slot at the center of the square patch. By optimizing the patch and the slot dimensions, a high efficiency (>90%) microstrip fed CP antenna with an impedance bandwidth of 24% and a 6 dB axial ratio bandwidth of 21.5% is designed. A coplanar waveguide (CPW) to microstrip transition with λ/4-open-ended stubs are then designed to match the antenna to the CPW packaging interface. The experimental results of the final packaged antenna agree reasonably with the simulation results, demonstrating an impedance bandwidth of more than 26% and a 6 dB axial ratio bandwidth of 22.7%.

Cite this paper

R. Zhou, D. Liu and H. Xin, "A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications," Wireless Engineering and Technology, Vol. 3 No. 3, 2012, pp. 97-105. doi: 10.4236/wet.2012.33016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. F. Buckwalter, et al., “An Integrated Subharmonic Coupled-Oscillator Scheme for a 60 GHz Phased-Array Transmitter,” IEEE Transaction on Microwave Theory Technology, Vol. 54, No. 12, 2006, pp. 4271-4280. doi:10.1109/TMTT.2006.885581
[2] T. S. Rappaport and D. A. Hawbaker, “Wide-Band Microwave Propagation Parameters Using Circular and Linear Polarized Antennas for Indoor Wireless Channels,” IEEE Transaction on Communication, Vol. 40, No. 2, 1992, pp. 240-245. doi:10.1109/26.129185
[3] T. Manabe, et al., “Polarization Dependence of Multipath Propagation and High-speed Transmission Characteristics of Indoor Millimeter-Wave Channel at 60 GHz,” IEEE Transaction on Vehicle Technology, Vol. 44, No. 2, 1995, pp. 268-274. doi:10.1109/25.385918
[4] C. Loyez, N. Rolland, P. A. Rolland and O. Lafond, “Indoor 60 GHz Radio Channel Sounding and Related T/R Module Considerations for High Data Rate Communications,” Electronics Letter, Vol. 37, No. 10, 2001, pp. 654-655. doi:10.1049/el:20010439
[5] M. Lye, R. B. Waterhouse, D. Novak, F. Zavosh and J. T. Aberle, “Design and Development of Printed Antenna Remote Units for Opti-cally Distributed Mobile Communications,” IEEE Microwave Guided Wave Letter, Vol. 8, No. 12, 1998, pp. 432-434. doi:10.1109/75.746766
[6] N. C. Karmakar, “Investigations into a Cavity-Backed Circular-Patch Antenna,” IEEE Transaction on Antennas and Propagation, Vol. 50, No. 12, 2002, pp. 1706-1715. doi:10.1109/TAP.2002.807427
[7] N. Herscovici, “A Wide-Band Single-Layer Patch Antenna,” IEEE Transaction on Antennas and Propagation, Vol. 46, No. 4, 1998, pp. 471-474. doi:10.1109/8.664109
[8] M. M. Faiz and P. F. Wahid, “A High Efficiency L-Band Microstrip Antenna,” Proceeding on IEEE International URSI Conference, Orlando, 11-16 July 1999, pp. 272-275.
[9] W. Choi, C. Pyo, Y. H. Cho, J. Choi and J. Chae, “High Gain and Broadband Microstrip Patch An-tenna Using a Superstrate Layer,” IEEE Antennas and Propa-gation Society International Symposium Digest, Columbus, Vol. 2, 22-25 June 2003, pp. 292-295.
[10] L. Bernard, R. Loison, R. Gillard and T. Lucidarme, “High Directivity Multiple Super-strate Antennas with Improved Bandwidth,” IEEE Antennas and Propagation Society International Symposium Digest, San Antonio, Vol. 2, 16-21 June 2002, pp. 522-525.
[11] N. G. Alexopoulos and D. R. Jackson, “Fundamental Superstrate (Cover) Effects on Printed Circuit Antennas,” IEEE Transac-tion on Antennas and Propagation, Vol. 32, No. 8, 1984, pp. 807-816. doi:10.1109/TAP.1984.1143433
[12] J. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar and M. M. Tentzeris, “A V-Band Front-End with 3-D Integrated Cavity Filters/Duplexers and Antenna in LTCC Technologies,” IEEE Transaction on Mi-crowave Theory Technology, Vol. 54, No. 7, 2006, pp. 2925-2936. doi:10.1109/TMTT.2006.877440
[13] X. Tang, S. Xiao, B. Wang and J. Wang, “A 60 GHz Wideband Slot Antenna Based on Substrate Integrated Waveguide Cavity,” International Journal of Infrared and Millimeter Waves, Vol. 8, No. 4, 2007, pp. 275-281. doi:10.1007/s10762-007-9206-z
[14] M. Sun, Y. P. Zhang, K. M. Chua, L. L. Wai, D. Liu and B. P. Gaucher, “Integration of Yagi Antenna in LTCC Package for Differential 60 GHz Radio,” IEEE Transaction on Antennas and Propagation, Vol. 56, No. 8, 2008, pp. 2780-2783. doi:10.1109/TAP.2008.927577
[15] S. Hu, Y. Xiong, L. Wang, R. Li and T. Lim, “A Millimeter-Wave Wideband High-Gain Antenna and Its 3D System-in-Package Solution in a TSV-Compatible Technology,” Electronic Components and Technology Conference, Lake Buena Vista, 31 May-3 June 2011, pp. 869-872.
[16] S. Hu, Y. Xiong, L. Wang, R. Li, J. Shi and T. Lim, “Compact High-Gain mmWave Antenna for TSV-Based System-in-Package Application,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 5, 2012, pp. 841-846. doi:10.1109/TCPMT.2012.2188293
[17] R. Sauleau and P. Coquet, “Input Impedance of Electromagnetic Bandgap Resonator Antennas,” Microwave and Optical Technology Letter, Vol. 41, No. 5, 2004, pp. 369-375. doi:10.1002/mop.20144
[18] S. J. Franson and R. W. Ziolkowski, “Gigabit per Second Data Transfer in High-Gain Metamaterial Structures at 60 GHz,” IEEE Transaction on Antennas and Propagation, Vol. 57, No. 10, 2009, pp. 2913-2925. doi:10.1109/TAP.2009.2029277
[19] A. E. I. Lamminen, A. R. Vimpari and J. S?ily, “UC-EBG on LTCC for 60-GHz Fre-quency Band Antenna Applications,” IEEE Transaction on Antennas and Propagation, Vol. 57, No. 10, 2009, pp. 2904-2912. doi:10.1109/TAP.2009.2029311
[20] I. Khromova, R. Gonzalo, I. Ederra, J. Teniente, K. Esselle and P. De-Hon, “Novel All-Dielectric mmWave Horn Antennas Based on EBG Struc-tures,” Proceedings of the 5th European Conference on An-tenna and Propagation, Rome, 11-15 April 2011, pp. 2959-2961.
[21] A.-C. Bunea, F. Craciunoiu and G Sajin, “28 GHz CRLH Antenna on Silicon Substrate,” Proceedings of the 41st European Microwave Conference, Manchester, 10-13 October 2011, pp. 579-582.
[22] G. M. Rebeiz, “Millime-ter-Wave and Terahertz Integrated Circuit Antennas,” Pro-ceedings of the IEEE, Vol. 80, No. 11, 1992, pp. 1748-1770. doi:10.1109/5.175253
[23] D. Nesic, A. Nesic and V. Brank-ovic, “Circular Polarised Printed Antenna Array with Broad-band Axial Ratio,” IEEE Antennas and Propagation Society International Symposium Digest, Columbus, 22-25 June 2003, pp. 912-915.
[24] K. Kim, S. Pinel, S. Laskar and J. Yook, “Circularly & Linearly Polarized Fan Beam Patch Antenna Arrays on Liquid Crystal Polymer Substrate for V-Band Ap-plications,” Asia Pacific Microwave Conference proceedings, Suzhou, 4-7 December 2005.
[25] H. Uchimura, N. Shino and K. Miyazato, “Novel Circular Polarized Antenna Array Sub-strates for 60 GHz-Band,” IEEE MTT-S International Micro-wave Symposium Digest, Long Beach, 14-18 June 2005, pp. 1875-1878. doi:10.1109/MWSYM.2005.1517099
[26] M. Barakat, C. Delaveaud and F. Ndagijimana, “Circularly Polarized Antenna on SOI for the 60 GHz Band,” Proceedings of the 2nd Euro-pean Conference on Antenna and Propagation, Edinburgh, 11-16 November 2007, pp. 1-6.
[27] R. Zhou, D. Liu and H. Xin, “Design of Circularly Polarized Antenna for 60 GHz Wireless Communications,” Proceedings of the 3rd European Conference on Antenna and Propagation, Berlin, 23-27 March 2009, pp. 3787-3789.
[28] J. Balcells, Y. Damgaci, B. A. Cetiner, J. Romeu and L. Jofre, “Polarization Reconfigurable MEMS-CPW Antenna for mmWave Applications,” Proceed-ings of the 4th European Conference on Antenna and Propagation, Barcelona, 12-16 April 2010, pp. 1-5.
[29] T. Zwick, C. Baks, U. Pfeiffer, D. Liu and B. Gaucher, “Probe Based MMW Antenna Measurement Setup,” IEEE Antennas and Propaga-tion Society International Symposium Digest, Monterey, 20-26 June 2004, pp. 747-750.
[30] U. R. Pfeiffer, et al., “A Chip-Scale Packaging Technology for 60 GHz Wireless Chip-sets,” IEEE Transaction on Microwave Theory Technology, Vol. 54, No. 8, 2006, pp. 3387-3397. doi:10.1109/TMTT.2006.877832
[31] J. Grzyb, D. Liu, U. Pfeiffer and B. Gaucher, “Wideband Cavity-Backed Folded Dipole Superstrate Antenna for 60 GHz Applications,” IEEE Antennas and Propagation Society International Symposium Digest, 5-10 June 2006, pp. 3939-3942.
[32] P. C. Sharma and K. C. Gupta, “Analysis and Optimized Design of Single Feed Circularly Polarized Microstrip Antennas,” IEEE Transaction on Antennas and Propagation, Vol. 31, No. 6, 1983, pp. 949-955. doi:10.1109/TAP.1983.1143162
[33] J. L. Kerr, “Microstrip Polarization Techniques,” Proceeding of Antenna Applications Symposium, 20-22 September 1978, 19 p.
[34] C. A. Balanis, “Antenna Theory, Analysis and Design,” 1st Edition, John Wiley & Sons, New York, 1982.
[35] J. P. Raskin, G. Gauthier, L. P. B. Katehi and G. M. Rebeiz, “Mode Conversion at GCPW-to-Micros-Trip-Line Transition,” IEEE Transaction on Microwave Theory Technology, Vol. 48, No. 1, 2000, pp. 158-161. doi:10.1109/22.817486

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.