Share This Article:

Polymer in Sustainable Energy

Abstract Full-Text HTML Download Download as PDF (Size:410KB) PP. 661-666
DOI: 10.4236/jmmce.2012.117049    4,614 Downloads   6,123 Views   Citations

ABSTRACT

A transparent polymer based solar cell was designed and fabricated to utilize the solar energy when exposed to sunlight. The transparent solar cell for window module was composed of a polymeric material PPV (Polyphenylene vinylene), ITO (Indium Tin Oxide) and electrode (Al, Mg, Ca). The polymeric sheet of this cell is by casting process, and electrode is applied on it by CVD (Chemical Vapor Deposition) process. The solar energy collected by this window can be used to power up small household electrical appliances. Recently, polymeric solar cell is made by a roll-to-roll process without using indium-tin oxide (ITO). A commercially available kapton (Polyimide) foil with an over layer of copper was used as the substrate. Sputtering of titanium metal on to the kapton/copper in a vacuum metalizing process gave the monolithic substrate and back electrode for the devices. The active layer was slot-die coated on to the kapton/Cu/Ti foil followed by slot-die coating of a layer of PET, PC or PEN.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Patel and S. Deshmukh, "Polymer in Sustainable Energy," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 7, 2012, pp. 661-666. doi: 10.4236/jmmce.2012.117049.

References

[1] E. Barbier, “Geothermal Energy Technology and Current Status: An Overview,” Renewable and Sustainable Re- view, Vol. 6, No. 1-2, 2002, pp. 3-65. doi:10.1016/S1364-0321(02)00002-3
[2] A. D. Sahin, “Progress and Recent Trends in Wind En- ergy,” Progress in Energy and Combustion Science, Vol. 30, No. 5, 2004, pp. 501-543. doi:10.1016/j.pecs.2004.04.001
[3] D. Barry, “Renewable Energy as a Natural Gas Price Hedge: The Case of Wind,” Energy Policy, Vol. 33, No. 6, 2005, pp. 799-807. doi:10.1016/j.enpol.2003.10.005
[4] R. Pelc and R. M. Fujita, “Renewable Energy from the Ocean,” Marine Policy, Vol. 26, No. 6, 2002, pp. 471-479. doi:10.1016/S0308-597X(02)00045-3
[5] Y. Tsur and A. Zemel, “Long-Term Perspective on the Development of Solar Energy,” Solar Energy, Vol. 68, No. 5, 2000, pp. 379-392. doi:10.1016/S0038-092X(00)00018-9
[6] S. Reber, W. Zimmermann and T. Kieliba, “Zone Melting Recrystallization of Silicon Films for Crystalline Silicon Thin-Film Solar Cells,” Solar Energy Materials and So-lar Cells, Vol. 65, No. 1-4, 2001. pp. 409-416. doi:10.1016/S0927-0248(00)00120-3
[7] M. A. Green, “Crystalline and Thin-Film Silicon Solar Cells: State of the Art and Future Potential,” Solar En-ergy, Vol. 74, No. 3, 2003, pp. 181-192. doi:10.1016/S0038-092X(03)00187-7
[8] J. Zhao, “Recent Advances of High-Efficiency Single Crystalline Silicon Solar Cells in Processing Technolo-gies and Substrate Materials,” Solar Energy Materials and Solar Cells, Vol. 82, No. 1-2, 2004, pp. 53-64. doi:10.1016/j.solmat.2004.01.005
[9] R. D. McConnell, “Assessment of the Dye-Sensitized Solar Cell,” Renewable and Sustainable Review, Vol. 6, No. 3, 2002, pp. 273-295.
[10] M. Gratzel, “Dye-Sensitized Solar Cells,” Journal of Pho- tochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, No. 2, 2003, pp. 145-153. doi:10.1016/S1389-5567(03)00026-1
[11] S. Anandan, “Recent Improvements and Arising Chal- lenges in Dye-Sensitized Solar Cells,” Solar Energy Ma- terials and Solar Cells, Vol. 91, No. 9, 2007, pp. 843- 846. doi:10.1016/j.solmat.2006.11.017
[12] H. Spanggaard and F. C. Krebs, “A Brief History of the Development of Organic and Polymeric Photovoltaics,” Solar Energy Materials and Solar Cells, Vol. 83, No. 2-3, 2004, pp. 125-146. doi:10.1016/j.solmat.2004.02.021
[13] J. Ackermann, C. Videlot and A. El Kassmi, “Growth of Organic Semiconductors for Hybrid Solar Cell Applica- tion,” Thin Solid Films, Vol. 403-404, 2002, pp. 157-161. doi:10.1016/S0040-6090(01)01578-4
[14] E. Arici, H. Hoppe, F. Schaffler, D. Meissner, M. A. Ma- lik and N. S. Sariciftci, “Hybrid Solar Cells Based on In- organic Nanoclusters and Conjugated Polymers,” Thin Solid Films, Vol. 451-452, 2004, pp. 612-618. doi:10.1016/j.tsf.2003.11.026
[15] T. Wada, Y. Hashimoto, S. Nishiwaki, T. Satoh, S. Ha-yashi, T. Negami and H. Miyake, “High-Efficiency CIGS Solar Cells with Modified CIGS Surface,” Solar Energy Materials and Solar Cells, Vol. 67, No. 1-4, 2001, pp. 305-310. doi:10.1016/S0927-0248(00)00296-8
[16] F. Kessler and D. Rudmann, “Technological Aspects of Flexible CIGS Solar Cells and Modules,” Solar Energy, Vol. 77, No. 6, 2004, pp. 685-695. doi:10.1016/j.solener.2004.04.010
[17] F. C. Krebs, “Roll-to-Roll Fabrication of Monolithic Large- Area Polymer Solarcells Free from Indium-Tin-Oxide, Solar Energy Materials and Solar Cells, Vol. 93, No. 9, 2009, pp. 1636-1641. doi:10.1016/j.solmat.2009.04.020
[18] Y. Galagan, I. G. de Vries, A. Langen, R. Andriessen, W. Verhees, S. Veenstra and J. Kroon, “Technology Devel- opment for Roll-to-Roll Production of Organicphotovol-taics,” Chemical Engineering and Processing: Process Intensification, Vol. 50, No. 5-6, 2010, pp. 454-461. doi:10.1016/j.cep.2010.07.012.
[19] F. C. Krebs, “Fabrication and Processing of Polymer So- lar Cells: A Reviewof Printing and Coating Techniques,” Solar Energy Materials and Solar Cells, Vol. 93, No. 4, 2009, pp. 394-412. doi:10.1016/j.solmat.2008.10.004
[20] F. C. Krebs, “Polymer Solar Cell Modules Prepared Us- ing Roll-to-Roll Methods: Knife-Over-Edge Coating, Slot- Die Coating and Screen Printing,” Solar Energy Materi- als and Solar Cells, Vol. 93, No. 4, 2009, pp. 465-475. doi:10.1016/j.solmat.2008.12.012
[21] L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss and M. Schr?dner, “Reel-to-Reel Wet Coating as an Effi- cient Up-Scaling Technique for the Production of Bulk- Heterojunction Polymer Solar Cells,” Solar Energy Ma- terials and Solar Cells, Vol. 93, No. 4, 2009, pp. 476- 483. doi:10.1016/j.solmat.2008.12.013
[22] A. J. Medford, M. R. Lilliedal, M. J?rgensen, D. Aar?, H. Pakalski, J. Fyenbo and F. C. Krebs, “Grid-Connected Polymer Solar Panels: Initial Considerations of Cost, Lifetime, and Practicality,” Optics Express, Vol. 18, No. 53, 2010, pp. A272-A285. doi:10.1364/OE.18.00A272
[23] F. C. Krebs, T. Tromholt and M. Jorgensen, “Upscaling of Polymer Solar Cellabrication Using Full Roll-to-Roll Processing,” Nanoscale, Vol. 2, No. 6, 2010, pp. 873-886. doi:10.1039/b9nr00430k
[24] Y. Zhou, F. Li, S. Barrau, W. Tian, O. Ingan?s and F. Zhang, “Inverted and Transparentpolymer Solar Cells Prepared with Vacuum-Free Processing,” Solar Energy Materials and Solar Cells, Vol. 93, No. 4, 2009, pp. 497- 500. doi:10.1016/j.solmat.2008.11.002
[25] S. K. Hau, H.-L. Yip, J. Zou and A. K. Y. Jen, “Indium Tin Oxide-Free Semi-Transparent Inverted Polymer Solar Cells Using Conducting Polymer as both Bottom and Top Electrodes,” Organic Electronics, Vol. 10, No. 7, 2009, pp. 1401-1407. doi:10.1016/j.orgel.2009.06.019
[26] B. Winther-Jensen and F .C. Krebs, “High-Conductivity Large-Area Semi-Transparentelectrodes for Polymer Pho- tovoltaics by Silk Screen Printing and Vapour-Phasede- position,” Solar Energy Materials and Solar Cells, Vol. 90, No. 2, 2006, pp. 123-132. doi:10.1016/j.solmat.2005.02.004
[27] E. Ahlswede, W. Muhleisen, M. W. bin Moh Wahi, J. Ha- nisch and M. Powalla, “Highlyefficient Organic Solar Cells with Printable Low-Cost Transparent Contacts,” Applied Physics Letters, Vol. 92, No. 14, 2008, p. 143307. doi:10.1063/1.2907564
[28] Y.-M. Chang, L. Wang and W.-F. Su, “Polymer Solar Cells with Poly(3,4-ethylenedioxythiophene) as Transpar- ent Anode,” Organic Electronics, Vol. 9, No. 6, 2008, pp. 968-973. doi:10.1016/j.orgel.2008.07.003
[29] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch and J. Luther, “Organic Solar Cells Using Inverted Layer Sequence,” Thin Solid Films, Vol. 491, No. 1-2, 2005, pp. 298-300. doi:10.1016/j.tsf.2005.06.006
[30] B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch and A. Gombert, “ITO-Free Wrap through Organic Solar Cells—A Module Conceptfor Cost-Effi- cient Reel-to-Reel Production,” Solar Energy Materials and Solar Cells, Vol. 91, No. 5, 2007, pp. 374-378. doi:10.1016/j.solmat.2006.10.005
[31] K. Tvingstedt, O. Ingan?s, “Electrode Grids for ITO Free Organic Photovoltaicdevices,” Advanced Materials, Vol. 19, No. 19, 2007, pp. 2893-2897. doi:10.1002/adma.200602561
[32] J. Zou, H.-L. Yip, S. K. Hau and A. K. Y. Jen, “Metal Grid/Conducting Polymer Hybridtransparent Electrode for Inverted Polymer Solar Cells,” Applied Physics Letters, Vol. 96, No. 20, 2010, pp. 203301-203303. doi:10.1063/1.3394679
[33] T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. He- remans, S. Borghs,R. Mertens, R. Andriessen and L. Leen- ders, “Printable Anodes for Flexible Organicsolar Cell Mo- dules,” Thin Solid Films, Vol. 451-452, 2004, pp. 22-25. doi:10.1016/j.tsf.2003.11.038
[34] Y. Galagan, R. Andriessen, E. Rubingh, N. Grossiord, P. Blom, S. Veenstra, W. Verhees and J. Kroon, “Toward Fully Printed Organic Photovoltaics: Processingand Sta- bility,” Holst Centre, Eindhoven, 2010, pp. 88-91.
[35] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plas-tic Solar Cells,” Advanced Functional Materials, Vol. 11, No. 1, 2001, pp. 15-26. doi:10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
[36] R. Koeppe and N. S. Sariciftci, “Photoinduced Charge and Energy Transfer Involving Fullerene Derivatives,” Pho- tochemical & Photobiological Sciences, Vol. 5, No. 12, 2006, pp. 1122-1131. doi:10.1039/b612933c
[37] M. A. Fox, M. Chanon, “Photoinduced Electron Transfer,” Elsevier, Amsterdam, 1988.
[38] H. Hoppe and N. S. Sariciftci, “Organic Solar Cells: An Overview,” Journal of Materials Research, Vol. 19, No. 7, 2004, pp. 1924-1945. doi:10.1557/JMR.2004.0252
[39] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T.Fromherz, M. T. Rispens, L. Sanchez and J. C. Hum- melen, “Origin of the Open Circuit Voltage of Plastic So- lar Cells,” Advanced Functional Materials, Vol. 11, No. 5, 2001, pp. 374-380. doi:10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
[40] A. Gadisa, M. Svensson, M. R. Andersson and O. Inganas, “Correlation between Oxidation Potential and Open-Cir- cuit Voltage of Composite Solar Cells Based on Blends of Polythiophenes/Fullerene Derivative,” Applied Physics Let- ters, Vol. 84, No. 9, 2004, pp. 1609-1611. doi:10.1063/1.1650878

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.