Synthesis and Characterization of Mesoporous Aluminosilicates for Copper Removal from Aqueous Medium

DOI: 10.4236/msa.2012.37068   PDF   HTML   XML   3,657 Downloads   5,946 Views   Citations


In this study the characterization of an aluminosilicate synthesized from commercial Al2(SO4)3 and colloidal SiO2 is presented, as well as its capacity for the removal of copper from aqueous solution. Characterization of the synthesized material was performed using X-ray diffraction, BET nitrogen adsorption-desorption, mass titration and the Boehm method. In order to obtain stable agglomeration and enhance its surface area (165 - 243 m2/g) and solid adsorbing capabilities, the molar ratio SiO2:Al2O3 (1:3, 1:1 and 3:1) was studied, the solubility of the preparation material, synthesis-procedure time and solution pH function were also examined. The maximum capacity to remove copper ions from an aqueous solution by synthesized aluminosilicate was 16 mg/g at pH 4 and 25℃. The Langmuir model fitted better to the copper adsorption experimental data.

Share and Cite:

D. Río, A. Aguilera-Alvarado, I. Cano-Aguilera, M. Martínez-Rosales and S. Holmes, "Synthesis and Characterization of Mesoporous Aluminosilicates for Copper Removal from Aqueous Medium," Materials Sciences and Applications, Vol. 3 No. 7, 2012, pp. 485-491. doi: 10.4236/msa.2012.37068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Karvelas, et al., “Occurrence and Fate of Heavy Met- als in the Wastewater Treatment Process,” Chemosphere, Vol. 53, No. 10, 2003, pp. 1201-1210. doi:10.1016/S0045-6535(03)00591-5
[2] N. Chubar, et al., “Heavy Metals Biosorption on Cork Biomass: Effect of the Pre-Treatment,” Colloids and Sur- faces A: Physicochemical and Engineering Aspects, Vol. 238, No. 1-3, 2004, pp. 51-58. doi:10.1016/j.colsurfa.2004.01.039
[3] C. Brooks, “Metal Recovery from Industrial Waste,” Lewis Publishers, Chelsea, 1991.
[4] E. Commission, “Heavy Metals in Waste,” COWI, Kongens Lyngby, 2002.
[5] Norma Official Mexicana NOM-127-SSA1-1994, “Salud ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización”, SSA, Mexico City, 1994.
[6] I. N. Sax, “Dangerous Properties of Industrial Materials,” Van Nostrand Reinhold Co., New York, 1975.
[7] M. A. Barakat, “New Trends in Removing Heavy Metals from Industrial Wastewater,” Arabian Journal of Chem- istry, Vol. 4, No. 4, 2011, pp. 361-377. doi:10.1016/j.arabjc.2010.07.019
[8] I. Oller, et al., “Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater De- contamination—A Review,” Science of the Total Envi- ronment, Vol. 409, No. 20, 2011, pp. 4141-4166. doi:10.1016/j.scitotenv.2010.08.061
[9] C. E. D. A. D. Guanajuato, “Estudio para la determinación del grado de alteración de la calidad del agua subterránea por compuestos orgánicos en Salamanca,” Guanajuato, Mexico, 2000.
[10] A. Medel-Reyes, et al., “Caracterización de Jales Mineros y Evaluación de su Peligrosidad con Base en su Potencial de Lixiviación,” Conciencia Tecnológica, Vol. 1-6, 2008, pp. 32-35.
[11] M. Meybeck, et al., “Historical Perspective of Heavy Met- als Contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River Basin (France) Following a DPSIR Approach (1950- 2005),” Science of The Total Environment, Vol. 375, No. 1-3, 2007, pp. 204-231.doi:10.1016/j.scitotenv.2006.12.017
[12] G. YaylalI-Abanuz, “Heavy Metal Contamination of Sur- face Soil around Gebze Industrial Area, Turkey,” Micro- chemical Journal, Vol. 99, No. 1, 2011, pp. 82-92. doi:10.1016/j.microc.2011.04.004
[13] R. Kumar Sharma, et al., “Heavy Metal Contamination of Soil and Vegetables in Suburban Areas of Varanasi, In- dia,” Ecotoxicology and Environmental Safety, Vol. 66, No. 2, 2007, pp. 258-266. doi:10.1016/j.ecoenv.2005.11.007
[14] US Department of Health and Human Services, “Toxico- logical Profile for Copper,” US Department of Health and Human Services, Atlanta, 2004.
[15] EPA National Primary Drinking Water Regulations, “[Sec. 141.32(e) (20)], Federal Regulations,” The Bureau of National Affairs, Inc., 1992.
[16] J. L. Gardea-Torresdey, et al., “Copper Adsorption by Esterified and Unesterified Fractions of Sphagnum Peat Moss and Its Different Humic Substances,” Journal of Hazardous Materials, Vol. 48, No. 1-3, 1996, pp. 191- 206. doi:10.1016/0304-3894(95)00156-5
[17] O. Tünay and N. I. Kabdasli, “Hydroxide Precipitation of Complexed Metals,” Water Research, Vol. 28, No. 10, 1994, pp. 2117-2124. doi:10.1016/0043-1354(94)90022-1
[18] S. Babel and T. A. Kurniawan, “Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Re- view,” Journal of Hazardous Materials, Vol. 97, No. 1-3, 2003, pp. 219-243. doi:10.1016/S0304-3894(02)00263-7
[19] Z. Hu, et al., “Impact of Metal Sorption and Internaliza- tion on Nitrification Inhibition,” Environmental Science & Technology, Vol. 37, No. 4, 2003, pp. 728-734. doi:10.1021/es025977d
[20] B. Volesky, “Detoxification of Metal-Bearing Effluents: Biosorption for the Next Century,” Hydrometallurgy, Vol. 59, No. 2-3, 2001, pp. 203-216. doi:10.1016/S0304-386X(00)00160-2
[21] K. S. Low, C. K. Lee and S. G. Tan, “Sorption of Triva- lent Chromium from Tannery Waste by Moss,” Environ- mental Technology, Vol. 18, No. 4, 2010, pp. 449-454.doi:10.1080/09593331808616559
[22] L. Charerntanyarak, “Heavy Metals Removal by Chemi- cal Coagulation and Precipitation,” Water Science and Technology, Vol. 39, No.10-11, 1999, pp. 135-138. doi:10.1016/S0273-1223(99)00304-2
[23] N. K. Lazaridis, et al., “Flotation of Metal-Loaded Clay Anion Exchangers. Part I: The Case of Chromates,” Chemosphere, Vol. 42, No. 4, 2001, pp. 373-378.doi:10.1016/S0045-6535(00)00143-0
[24] M. Pansini, et al., “Chromium Removal from Water by Ion Exchange Using Zeolite,” Desalination, Vol. 83, No. 1-3, 1991, pp. 145-157. doi:10.1016/0011-9164(91)85091-8
[25] G. Chen, “Electrochemical Technologies in Wastewater Treatment,” Separation and Purification Technology, Vol. 38, No. 1, 2004, pp. 11-41. doi:10.1016/j.seppur.2003.10.006
[26] A. Santarsiero, et al., “Heavy Metal Distribution in Waste- water from a Treatment Plant,” Microchemical Jounal, Vol. 59, No. 2, 1998, pp. 219-227. doi:10.1006/mchj.1998.1610
[27] J. F. Lee, et al., “Monitoring of the Structure of Mesopor- ous Silica Materials Tailored Using Different Organic Templates and Their Effect on the Adsorption of Heavy Metal Ions,” Journal of Physical Chemistry C, Vol. 115, No. 16, 2011, pp. 8165-8174.doi:10.1021/jp200029g
[28] R. Noble and P. Terry, “Principles of Chemical Separa- tions with Environmental Applications,” Cambridge Uni- versity Press, Cambridge, 2004. doi:10.1017/CBO9780511616594
[29] C. González-Figueroa, et. al., “Pseudoboehmita Aglomerada a partir de Sulfato de Aluminio,” Revista Enlace Químico, Vol. 2, No. 1, 2008.
[30] H. P. Boehm, et al., “Surface Oxides of Carbon,” Ange- wandte Chemie International Edition in English, Vol. 3, No. 10, 1964, pp. 669-677. doi:10.1002/anie.196406691
[31] A. Contescu, et al., “Surface Acidity of Carbons Charac- terized by Their Continuous pK Distribution and Boehm Titration,” Carbon, Vol. 35, No. 1, 1997, pp. 83-94.doi:10.1016/S0008-6223(96)00125-X
[32] K. S. W. Sing, “Reporting Physisorption Data for Gas Solid Systems—With Special Reference to the Determination of Surface-Area and Porosity,” Pure and Applied Chemistry, Vol. 54, No. 11, 1982, pp. 2201-2218.doi:10.1351/pac198254112201
[33] W. Fan, et al., “Hierarchical Nanofabrication of Micro- porous Crystals with Ordered Mesoporosity,” Nature Ma- terials, Vol. 7, No. 12, 2008, pp. 984-991.
[34] A. A. Jara, et al., “Studies of the Surface Charge of Amor- phous Aluminosilicates Using Surface Complexation Models,” Journal of Colloid and Interface Science, Vol. 292, No. 1, 2005, pp. 160-170. doi:10.1016/j.jcis.2005.05.083
[35] C. Appel, et al., “Point of Zero Charge Determination in Soils and Minerals via Traditional Methods and Detection of Electroacoustic Mobility,” Geoderma, Vol. 113, No. 1- 2, 2003, pp. 77-93.doi:10.1016/S0016-7061(02)00316-6
[36] M. M. Areco, et al., “Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by Dead Biomasses of Green Alga Ulva Lac- tuca and the Development of a Sustainable Matrix for Adsorption Implementation,” Journal of Hazardous Materials, Vol. 213-214, 2012, pp. 123-132.doi:10.1016/j.jhazmat.2012.01.073
[37] V. J. Inglezakis and S. G. Poulopoulos, “Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications,” Elsevier, Amsterdam, 2006.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.