Nonlinear Propagation of Dust-Ion-Acoustic Waves in a Degenerate Dense Plasma


Nonlinear propagation of dust-ion-acoustic waves in a degenerate dense plasma (with the constituents being degenerate, for both the limits non-relativistic or ultra-relativistic) have been investigated by the reductive perturbation method. The Korteweg de-Vries (K-dV) equation and Burger’s equation have been derived, and the numerical solutions of those equations have been analyzed to identify the basic features of electrostatic solitary and shock structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs, have been briefly discussed.

Share and Cite:

M. Zobaer, N. Roy and A. Mamun, "Nonlinear Propagation of Dust-Ion-Acoustic Waves in a Degenerate Dense Plasma," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 604-609. doi: 10.4236/jmp.2012.37082.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Chandrasekhar, “The Density of White Dwarf Stars,” Philosophical Magazine, Vol. 11, No. 7, 1931, pp. 592- 596.
[2] S. Chandrasekhar, “The Maximum Mass of Ideal White Dwarfs,” Astrophysical Journal, Vol. 74, No. 1, 1931, pp. 81-82. doi:10.1086/143324
[3] S. Chandrasekhar, “Stellar Configurations with Degenerate Cores,” The Observatory, Vol. 57, No. 1934, p. 373.
[4] S. Chandrasekhar, “The Highly Collapsed Configurations of a Stellar Mass (Second Paper),” Monthly Notices of the Royal Astronomical Society, Vol. 95, No. 1935, pp. 226- 260
[5] D. Koester and G. Chanmugam, “Physics of White Dwarf Stars,” Reports on Progress in Physics, Vol. 53, No. 7, 1990, p. 837. doi:10.1088/0034-4885/53/7/001
[6] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects,” Wiley, New York, 1983.
[7] E. Garcia-Berro, S. Torres, L. G. Althaus, I. Renedo, P. Loren-Aguiltar, A. H. Corsico, R. D. Rohrmann, M. Salaris and J. Isern, “A White Dwarf Cooling Age of 8 Gyr for NGC 6791 from Physical Separation Processes,” Nature, Vol. 465, 2010, pp. 194-196. doi:10.1038/nature09045
[8] A. A. Mamun and P. K. Shukla, “Nonplanar Dust Ion- Acoustic Solitary and Shock Waves in a Dusty Plasma with Electrons Following a Vortex-Like Distribution,” Physics Letters A, Vol. 374, No. 3, 2010, pp. 472-475. doi:10.1016/j.physleta.2009.08.071
[9] G. Manfredi, “How to Model Quantum Plasmas,” Proceedings of the Workshop on Kinetic Theory, The Fields Institute Communications Series, Vol. 46, 2005, p. 263.
[10] L. Stenfo, P. K. Shukla and M. Marklund, “New Low- Frequency Oscillations in Quantum Dusty Plasmas,” Europhysics Letter, Vol. 74, 2006, p. 844. doi:10.1209/epl/i2006-10032-x
[11] P. K. Shukla, “New Dust in Quantum Plasma,” Physics Letter A, Vol. 352, No. 3, 2006, pp. 242-243. doi:10.1016/j.physleta.2005.11.065
[12] P. K. Shukla and L. Stenfo, “Jeans Instabilities in Quantum Dusty Plasmas,” Physics Letter A, Vol. 355, No. 4-5, 2006, pp. 378-380. doi:10.1016/j.physleta.2006.02.054
[13] P. K. Shukla and B. Eliasson, “Formation and Dynamics of Dark Solitons and Vortices in Quantum Electron Plasmas,” Physics Review Letter, Vol. 96, No. 24, 2006, Article ID: 245001. doi:10.1103/PhysRevLett.96.245001
[14] B. Eliasson and P. K. Shukla, “Nonlinear Aspects of Quantum Plasma Physics: Nanoplasmonics and Nanostructures in Dense Plasmas,” Plasma and Fusion Research, Vol. 4, No. 032, 2009.
[15] D. Shaikh and P. K.Shukla, “Fluid Turbulence in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 12, 2007, Article ID: 125002. doi:10.1103/PhysRevLett.99.125002
[16] G. Brodin and M. Marklund, “Spin Magnetohydrodynamics,” New Journal of Physics, Vol. 9, No. 8, 2007, p. 277. doi:10.1088/1367-2630/9/8/277
[17] G. Brodin and M. Marklund, “Spin Solitons in Magnetized Pair Plasmas,” Physics of Plasmas, Vol. 14, No. 11, 2007, Article ID: 112107. doi:10.1063/1.2793744
[18] M. Marklund and G. Brodin, “Dynamics of Spin-1/2 Quantum Plasmas,” Physics Review Letter, Vol. 98, 2007, Article ID: 025001. doi:10.1103/PhysRevLett.98.025001
[19] P. K. Shukla, “A New Spin in Quantum Plasmas,” Nature Physics, Vol. 5, 2009, pp. 92-93. doi:10.1038/nphys1194
[20] M. Marklund, B. Eiasson and P. K. Shukla, “Magnetosonic Solitons in a Fermionic Quantum Plasma,” Physics Review E, Vol. 76, No. 6, 2007, Article ID: 067401. doi:10.1103/PhysRevE.76.067401
[21] P. K. Shukla and B. Eliasson, “Nonlinear Aspects of Quantum Plasma Physics,” Physics Uspekhi, Vol. 53, 2010, p. 51. doi:10.3367/UFNe.0180.201001b.0055
[22] W. Masood, B. Eiasson and P. K. Shukla, “Electromagnetic Wave Equations for Relativistically Degenerate Quantum Magnetoplasmas,” Physics Review E, Vol. 81, No. 6, 2010, Article ID: 066401. doi:10.1103/PhysRevE.81.066401
[23] F. Hass, “Variational Approach for the Quantum Zakharov System,” Physics of Plasmas, Vol. 14, No. 4, 2007.
[24] A. Misra and S. Samanta, “Quantum Electron-Acoustic Double Layers in a Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 12, 2008, Article ID: 122307. doi:10.1063/1.3040014
[25] A. P. Misra, S. Banerjee, F. Haas, P. K. Shukla and L. P. G. Assis, “Temporal Dynamics in the One-Dimensional Quantum Zakharov Equations for Plasmas,” Physics of Plasmas, Vol. 17, No. 3, 2010, Article ID: 032307. doi:10.1063/1.3356059
[26] S. Maxon and J. Viecelli, “Spherical Solitons,” Physics Review Letter, Vol. 32, No. 1, 1974, pp. 4-6. doi:10.1103/PhysRevLett.32.4
[27] A. Gavrikov, et al., “32nd EPS Conference on Plasma Physics (2005),” Tarragona, Vol. 29C, 2005, O-2.011.
[28] F. C. Michel, “Theory of Pulsar Magnetospheres,” Review of Modern Physics, Vol. 54, No. 1, 1982, pp. 1-66. doi:10.1103/RevModPhys.54.1
[29] H. R. Miller and P. J. Witta, “Active Galactic Nuclei,” Springer, New York, 1987, p. 202.
[30] E. Tandberg-Hansen and A. G. Emslie, “The Physics of Solar Flares,” Cambridge University Press, Cambridge, 1988, p. 124.
[31] J. Hoyos, A. Reisenegger and J. A. Valdivia, “Magnetic Field Evolution in Neutron Stars: One-Dimensional Multi- Fluid Model,” Astronomy and Astrophysics, Vol. 487, No. 3, 2008, pp. 789-803. doi:10.1051/0004-6361:200809466
[32] F. Asenjo, V. Munoz, J. A. Valdivia and S. M. Hahajan, “A Hydrodynamical Model for Relativistic Spin Quantum Plasmas,” Physics of Plasmas, Vol. 18, No. 1, 2011, Article ID: 012107. doi:10.1063/1.3533448
[33] F. A. Asenjo, V. Munoz, J. A. Valdivia and T. Hada, “Circularly Polarized Wave Propagation in Magnetofluid Dynamics for Relativistic Electron-Positron Plasmas,” Physics of Plasmas, Vol. 16, No. 12, 2009, Article ID: 122108. doi:10.1063/1.3272667

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.