Elastic Properties of Clinopyroxene Based Glasses along Diopside (CaMgSi2O6)-Jadeite (NaAlSi2O6) Join

Abstract

The elastic properties of glasses along Diopside (CaMgSi2O6)-Jadeite (NaAlSi2O6) join (Dix - Jd1-x where x=20, 40, 60, 80, 100 mole %), were obtained by the ultrasonic echography technique, at room temperature. The correlation of elastic moduli with the atomic packing density of these glasses was discussed. The derived experimental values of Young’s modulus, bulk modulus, shear modulus and Poisson’s ratio for investigated glasses were compared with those theoretically calculated values in terms of the Makishima–Mackenzie model and the modified model presented by Rocherulle.

Share and Cite:

R. Jindal, W. Jatmiko, I. Singh and R. Jayaganthan, "Elastic Properties of Clinopyroxene Based Glasses along Diopside (CaMgSi2O6)-Jadeite (NaAlSi2O6) Join," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 3, 2012, pp. 267-284. doi: 10.4236/jmmce.2012.113020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D.P.H. Hasselman, Thermal stress resistance parameters for brittle refractory ceramics: A compendium, Am. Ceram. Soc. Bull. 49 (1970) 1033–37.
[2] K. Hirao, M. Yoshimoto, N. Soga, and K. Tanaka, Densification of magnesium and calcium metaphosphate glasses, J. Non-Cryst. Solids 130 (1991) 78–84.
[3] A. Makishima and J. D. Mackenzie, Direct calculation of Young’s modulus of glass, J. Non-Cryst. Solids 13 (1973) 35–45.
[4] A. Makishima and J. D. Mackenzie, Calculation of Bulk modulus, Shear modulus and Poisson's ratio of glass, J. Non- Crystalline Solids 17 (1975) 147-57.
[5] A. Makishima and J. D. Mackenzie, Calculation of Bulk modulus, Shear modulus and Poisson's ratio of glass, J. Non- Crystalline Solids 17 (1975) 147-57.
[6] A. Makishima, Y. Tamura, T. Sakaino, Elastic moduli and refractive indices of aluminosilicate glasses containing Y2O3, La2O3 and TiO2, J. Am. Ceram. Soc. 61 (1978) 247-249.
[7] B. Bridge, N.D. Patel, D.N. Waters, On the elastic constants and structure of the pure inorganic oxide glasses, Phys. Stat. Sol. 77 (1983) 655-668.
[8] J. Rocherulle, C. Ecolivet, M. Poulain, P. Verdier, Y. Laurent, Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie's theory, J. Non-Cryst. Solids 108 (1989) 187-193.
[9] A. Elshafie, Materials science communication room temperature ultrasonic wave velocity and attenuation in Ge1080-xx10 bulk glassy samples, SeSbTeMater. Chem. Phys. 51 (1997) 182-185.
[10] A. Abd El-Moneim, I.M. Yousssof, M.M. Shoaib, Elastic moduli prediction and correlation in SiO2-based glasses, Mater. Chem. Phys. 52 (1998) 258-262.
[11] R. E l-Mallawany, Tellurite glasses Part 1. Elastic properties, Mater. Chem. Phys. 53 (1998) 93-120.
[12] H.A. Abo-Mosallam, R.G. Hill, N. Karpukhina, R.V. Law, MAS-NMR studies of glasses and glass-ceramics based on clinopyroxene-fluorapatite system, J. Mater. Chem. 20 (2010) 790-797.
[13] J. Schroeder, in: M. Tomozawa, R.H. Doremus (Eds.), Treatise on Material Science and Technology, vol. 12, Academic Press, New York (1977) 157–222.
[14] D.J. Bergman, Y. Kantor, Critical properties of an elastic fractal, Phys. Rev. Lett. 53 (1984) 511-514.
[15] R. Bogue, R.J. Sladek, Elasticity and thermal expansivity of (AgI) x (AgPo3) 1-x glasses, Phy. Rev. B 42 (1990) 5280-5288.
[16] G.A. Saunders, T. Brennan, M. Acet, M. Cankurtaran, H.B. Senin, H.A.A. Sidek, M. Federico, Elastic and non-linear acoustic properties and thermal expansion of cerium metaphosphate glasses, J. Non-Cryst. Solids 282 (2001) 291-305.
[17] N. Soga, Elastic moduli and fracture toughness of glass, J. Non-cryst. Solids 73 (1985) 305-313.
[18] T. Rouxel, Elastic Properties and Short-to Medium-Range Order in Glasses, J. Am. Ceram. Soc. 90 (10) (2007) 3019–3039.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.