Ferroelectric Phase Transition in Graphene with Anderson Interaction

.
DOI: 10.4236/msa.2010.12013   PDF   HTML     5,277 Downloads   8,744 Views   Citations

Abstract

The normal transverse electric field which appears in impurity graphene spontaneously in the presence of a high applied electric field was calculated. The given effect can be associated with non-equilibrium of electron subsystem in graphene. The characteristics of spontaneous field on the parameters of the problem were investigated.

Share and Cite:

N. Yanyushkina, M. Belonenko and N. Lebedev, "Ferroelectric Phase Transition in Graphene with Anderson Interaction," Materials Sciences and Applications, Vol. 1 No. 2, 2010, pp. 72-76. doi: 10.4236/msa.2010.12013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. M. Shmelev and I. I. Maglevanny, “Electric-Field- Induced Ferroelectricity of Electron Gas,” Journal of Physics, Vol. 10, No. 31, 1998, pp. 6995-7002.
[2] G. М. Shmelev, I. I. Maglevaniy and Е. М. Epshtein, “Ferroelectric Properties of Non-Equilibrium Electron Gas,” Russian Physics Journal, Vol. 41, No. 4, 1998, pp. 72-79.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, Vol. 438, No. 7065, November 2005, pp. 197-200.
[5] Y. Zhang, J. W. Tan, H. L. Stormer and P. Kim, “Experimental Observation of The Quantum Hall Effect And Berry's Phase in Graphene,” Nature, Vol. 438, No. 7065, November 2005, pp. 201-204.
[6] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-Based Composite Materials,” Nature, Vol. 442, No. 7100, July 2006, pp. 282-286.
[7] A. M. Zheltikov, “Ultrashort Pulses and Methods of Nonlinear Optics,” Fizmatlit, Moscow, 2006.
[8] T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the Electronic Structure of Bilayer Graphene,” Science, Vol. 313, No. 5789, August 2006, pp. 951-954.
[9] A. Nagashima, K. Nuka, H. Itoh, C. Oshima and S. Otani, “Electronic States of Monolayer Graphite Formed on Tic(111) Surface,” Surface Science, Vol. 291, No. 1-2, 1993, pp. 93-98.
[10] M. B. Belonenko, N. G. Lebedev and O. Yu. Tuzalina, “Electromagnetic Solitons in a System of Graphene Planes with Anderson Impurities,” Journal of Russian Laser Research, Vol. 30, No. 2, 2009, pp. 102-109.
[11] Y. A. Izyumov and D. S. Аlekseev, “Ferromagnetic State in the Anderson Model,” Fizika Metal, Materialoved, Vol. 97, January 2004, pp. 18-27.
[12] Y. A. Izyumov and N. I. Chacshin, “Hubbard model in the representation of the generating functional,” Fizika Metal, Materialoved, Vol. 97, No. 3, March 2004, pp. 5-14.
[13] P. R. Wallace, “The Band Theory of Graphite,” Physical Review, Vol. 71, No. 9, May 1947, pp. 622-634.
[14] E. M. Epshtein, I. I. Maglevanny, a G. M. Shmelev, “Electric-Field-Induced Magnetoresistance of Lateral Superlattices,” Journal of Physics, Vol. 8, No. 25, 1996, pp. 4509-4514.
[15] F. G. Bass and A. P. Tetervov, “High-Frequency Phenomena in Semiconductor Superlattices,” Physics Reports, Vol. 140, No. 5, 1986, pp. 237-322.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.