Studies on the Effect of Ba2+ on Growth, structural, Morphology, Optical, and Mechanical Properties of L-Valinium Picrate


Single crystals of undoped (pure) and barium nitrate (Ba (NO3)2)-doped L-Valinium Picrate (LVP) were grown from aqueous solution by slow evaporation technique. Morphological changes have been observed when Ba (NO3)2) is doped into LVP crystals. The dopant concentration in the crystals was measured by ICP technique. Slight changes in the unit cell parameter of LVP after doping with Ba (NO3)2) have been detected. The powder X-ray diffraction of the grown crystals has been recorded and the various planes of reflection identified shows shift in the peak positions. FTIR and UV spectra reveal the functional group identification and optical property of the grown crystals. The relative second harmonic generation (SHG) efficiency measurements revealed that both 5 and 10 mol % of Ba (NO3)2) in LVP enhanced the SHG efficiency by 92.85 and 160.59 times that of KDP respectively. However, at higher concentration, SHG efficiency is not increased but rather decreased from it undoped condition. Microhardness studies show that hardness number (Hv) increased with increase in load for all the grown crystals of this work.

Share and Cite:

K. Raj and P. Murugakoothan, "Studies on the Effect of Ba2+ on Growth, structural, Morphology, Optical, and Mechanical Properties of L-Valinium Picrate," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 10, 2011, pp. 973-987. doi: 10.4236/jmmce.2011.1010075.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Prasad, P. N., Williams, D. J., 1991, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymer, Wiley, New York.
[2] Jiang, M. H., Fang, Q., 1999, Adv. Mater.,Vol, 11, pp. 1147
[3] Agarwal, M. D., Choi, J., Wang, W. S., Bhat, K., Lal, R. B., Shields, A. D., Penn, B. G., Frazier, D. V.,1999, J. Cryst. Growth, Vol. 179, pp. 2004.
[4] Jiang, M., Xu, D., Tan, Z., 1983, Acta. Chem. Syn., Vol.41, pp570.
[5] Ding, Y. J., Mu, X., Gu, X.,2000, J. Nonlinear Opt. Phys. Mater, Vol. 9 pp. 21.
[6] Kityk, I. V., MakowskaJanusik, M., Gondek, E., Krzeminska, L., Daniel, A., Plucinski, K. J., Benet, S., and Sahraoui, B., 2004, J. Phys: Cond. Matter, Vol.16 pp. 231.
[7] Bhavannarayana, G., Budakoti,G. C., Maurya, K. K., Kumar, B., 2005, J. Cryst. Growth, Vol. 282 pp. 394 - 401.
[8] Chen Jianzhong, Lin Sukun, Yang Fengtu, Wang Jiahe, and Lang Jianming, 1997, J. Cryst. Growth, Vol. 179, pp. 226.
[9] Kuznetsov, V. A., Oknrimenko, T. M., Miroslawa Rak, 1998, J. Cryst. Growth, Vol. 193, pp. 164.
[10] Guohui Li, Xue Liping, Genbosu, Xinxin Zhuang, Zhengdong Li, and Youping He., J. Cryst. Growth, 2005, Vol. 274, pp 555.
[11] Krishan Lal, and Bhagavannarayana, G., 1989, J. Appl. Cryst, Vol. 22, pp. 209-215.
[12] Bhagavannarayana, G., and Kushwaha, S. K., 2010, J. Appl. Cryst, Vol. 43. pp.154-162.
[13] Kurtz, S. K., Perry, T. T., 1968, J. Appl. Phys, Vol. 39. Pp. 3798-3813.
[14] Anitha, K., Sridhar, B., and Raja ram, R. K., 2004, Acta Cryst, Vol. E60. pp.1530.
[15] Podder, J., Ramalingom, S., Narayana Kalkura, S., 2001, Cryst. Res. Techno, Vol. 36.pp. 549- 556.
[16] Jiang, X. N., Xu, D., Yuan, D. R., Lu, M. K., Sun, D. L., 2002, Cryst. Res. Technol, Vol. 6. Pp. 564 – 569.
[17] Lee et al, W. T., 1999, J. Phys; Condens. Matter, Vol. 11. Pp. 7385-7410.
[18] Novotny, J. Proceeding of SPIE. Vol. 4710. Int. Conf. Thermo sense, April. 2002, XXIV. pp. 1-4. Orlando, FL, USA.
[19] Rak, M., Eremin, N. N., Eremina, T. A., Kuznetsov, V. A., Ohkrimenko, T. M., Furmanova, N. G., and Efremova, E. P., 2005, J. Cryst. Growth, Vol. 273. pp. 577.
[20] Martin Britto Dhass., and Natarajan, S., 2008, Cryst. Res. Technol, Vol. 43.No. 8, 869 - 873
[21] Anitha, K., Sridhar, B., and Raja ram, R. K., 2004, Acta Cryst, Vol. E60. pp. o1530 – o1532.
[22] Socrates, G., 2001, Infrared and Raman Characteristic Group Frequencies, 3rd ed. New York.
[23] Daniel R Palleros, 2000, Experimental Organic Chemistry, University of California, and Santa Cruz. John Wikley & sons Inc. pp. 690-692.
[24] Socrates, G., 1980, Infrared and Characteristic Group Frequencies, John Wiley & sons: Singapore.
[25] Devis, E. A., Mott, N. F., Philos. Mag, Vol. 22. pp. 903.
[26] Lakshanana Perumal, C. K., Arulchakkaravathi, A., Prajesh, N., Santharaghavan,P., Ramasamy, P., 2002, Mat. Lett, Vol. 56. pp. 578.
[27] Pal, T., Kar, T., Boceli, G., Rigi, L., 2004, Crystal Growth Des, Vol. 4. pp. 743-747.
[28] Hall, S. R., Kolinsky, P. V., Jones, R., Allen, S., Gordon, P., Boshwell, B., Norman, P. A., Hursthouse, M., Karaulov, A., Baldwin, J., 1986, J.Crystal. Growth. 79. pp. 745.
[29] Thompson, W. H., Blanchard-Desce, M., Muller, A. J., Fort, A., Barzovkan, M., Hynes, J. T., 1999, J. Phys. Chem. Vol. A 103. pp. 3766.
[30] Shen, Y., 1984, The Principles of Nonlinear Optics, Wiley, New York.
[31] Hall, S. R., Kolinsky, P. V., Jones, R., Allen, S., Gorden, P., Boshwell, B., Bloor, D., Norman, A., J. Baldwin, 1986, J. Crystal. Growth. Vol. 79. pp. 745-751.
[32] Wang, Y., Eatus, D. F., 1985, Chem. Phy. Lett, Vol. 120. pp. 441-444.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.