A Model for FeSiMg Alloy Production by Reduction Technique

Abstract

Ferrosilicon magnesium is basic foundry alloys used for the production of ductile cast iron. Magnesium content plays an important role in the produced alloy grades from dolomite ore. The focus of the present work is to simulate mathematical model to predict magnesium content in the ferrosilicon magnesium, which produced by silicothermic reduction of calcined dolomite. The basic assumptions of this model are: constant low viscosity of molten charge, the reaction is irreversible of second order and the reaction is isothermal. The reaction is based on the following equation: 2MgO+2Si →Mg2Si+SiO2 The results of previous work was found to be in a good coincidence with the predicted values by the model [Mg]=(MgO0)[Si0][eKt[(MgO0)-[Si0]]-1]/ (MgO0)[eKt[(MgO0)-[Si0]]-[Si0]] where [Mg] is the concentration of magnesium metal in ferrosilicon magnesium alloy in mol/L. [Si0] and (MgO0) are the initial concentration of silicon and magnesium oxide in charge in mol/L, while t is time in second, K is the reaction rate constant ( 3.26588x10-7 L Sec-1 mol-1). The predicted values are greater than the experimental values; this may be attributed to the use of concentration instead of the activity. The predicted values of magnesium content in ferrosilicon magnesium alloy are in a good agreement with the experimental results obtained in previous work at low viscosity.

Share and Cite:

S. Ghali, "A Model for FeSiMg Alloy Production by Reduction Technique," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 9, 2011, pp. 865-874. doi: 10.4236/jmmce.2011.109067.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] 461964 (U.S.S.R.), 8(1975), M. A. Kekelidze et al., Auth. Cert., Bynll. Izobr.,
[2] M. A. Ryss et al.: Stal, April, (1973), p. 303.
[3] D. I. Saginadze et al.: Stal, 2 (1977), p.140.
[4] D. I. Saginadze et al.: Steel in the USSR, 16 (1986), p. 533
[5] F. N. Tavadze et al.: Nauka Proizvodstva, C51, (1983), p. 243.
[6] 727704 (U.S.S.R.), 14(1980), F. N. Tavadze et al., Auth. Cert., Bynll. Izobr.
[7] V. Varbanov et al.: Works of the Iron and Steel Inst., VIII (1977).
[8] D. J. G. Ives: Principles of the extraction of metals, London, (1969).
[9] H. J. T. Ellingham: I. Soc. Chem. Ind., Lond., 1944 & C.W. Dannatt and H.J.T. Ellingham: Disc Faraday Soc., 4 (1948), p. 126
[10] N. P. Lyakiskev et al.: Alyuminotermiya "Aluminothermy", Moscow, (1978), p. 424
[11] M. A. Merritt and E. V. Marcossi: Electric Furnace Conf. Proc., New York, 29 (1972), p. 184.
[12] V. Ryachikov, V. G.. Mizin., and A. S. Dubrovin: Steel In U.S.S.R., 12 (1982), p. 264.
[13] P. Sokolov and N. L. Ponomarov: Introduction to Metallothermic, Moscow, (1990), p. 134.
[14] W. Klemm and H. Wwstlinning: Z.anorg. Chem., 245, (1941), p. 365.
[15] R.G. Ward, M.A., Ph. D: An introduction to the physical chemistry of iron & steel making, Edward Arnold (Publishers) LTD, (1962), p. 212/213.
[16] H. El-Faramawy et al.: Ferrosilicon Magnesium Production, Scandinavian Journal of Metallurgy, 32 (2003) p. 37/46.
[17] M. Alper, et al: J. Am. Ceram. Soc., 45 (1962) No. 6, p. 263/8
[18] R. A. Howald & N. B. Roy: CALPHAD 15(1991) No. 2, p. 159/72
[19] B. Ellingstaeter & T. Rosenquist: Journal of Metals, 6 (1956), p. 111.
[20] L M. Pidgeon: Trans Met Soc AIME, 226 (1963) p. 821
[21] L. M. Pidgeon & J. K. King: Trans Faraday Soc, 40 (1948) p. 197.
[22] V. Ryabchikov & A. S. Mikulinskii: Chemical Abstract, 35 (1962) p. 62.
[23] J. M. Taguri & L M. Pidgeon: Can J Chem, 39 (1961) p. 540
[24] K. Tomasek, I. Imsis & O. Sesveiec: Light Metals, Proc. Conf., Montreal, Quebec, 25- 29 August (1996) p. 213
[25] J. R. Wynnyckj, L. M. Pidgeon: Met Trans 2 (1971) p. 979
[26] C. Chen & W. Zhao: Acta Met. Sinica, 19 (1983) No. 1 , A1/A8
[27] K. C. Mills & B. J. Keene: Int Metal Review, 1 (1981) p. 21/69
[28] J. F. Elliott, M. Gleiser & V. Ramakrishna: Thermochemistry for Steelmaking. Vol. II, Reading. Palo Alto/London (1963).
[29] H. R. Rein, J. Chipman: Trans. Metallurg. Soc. AIME, 233 (1965), p. 415/425
[30] S. Kambayashi, E. Katao: J. Chem. Thermodyn. 15 (1983) No. 8, p. 701/707
[31] W. T. Hughes, C. E. Ransky & E. F. Emle: Advan Extr Met Proc Symp, London (1968) 429
[32] R. B.Winkler: Vacuum metallurgy, Elsevier, London, (1971)193

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.