Share This Article:

Dimerization of 1-Phenyl-1H-Tetrazole-5-Thiol over Metalloporphyrin Catalysts

Abstract Full-Text HTML XML Download Download as PDF (Size:436KB) PP. 392-397
DOI: 10.4236/aces.2012.23047    4,077 Downloads   7,233 Views   Citations

ABSTRACT

In an alkaline methanol solution, dimerization of 1-phenyl-1H-tetrazole-5-thiol (HL) was carried out over metalloporphyrin catalysts under mild conditions. The dimer product, 1,2-bis (1-phenyl-1H-tetrazol-5-yl) disulfane (L-L), was characterized by determinations of infrared (IR), HPLC, NMR and elementary analysis respectively. In situ UV-Vis spectroscopic analysis and cyclic voltammetric (CV) determinations suggested that the active intermediate for L-L formation is an axially ligated complex, RS-MnTHPP, which decomposes into a MnTHPP molecule and a stable radical (SR) for coupling to form the disulfane. Meanwhile MnIITHPP molecule can be oxidized easily to form MnTHPP species again by oxygen from the air for using in next catalytic circle.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Wu, J. Yang, Y. Yan, S. Tong, D. Tan, J. Yu and L. Yu, "Dimerization of 1-Phenyl-1H-Tetrazole-5-Thiol over Metalloporphyrin Catalysts," Advances in Chemical Engineering and Science, Vol. 2 No. 3, 2012, pp. 392-397. doi: 10.4236/aces.2012.23047.

References

[1] Y. Yan, E. H. Kang, K. E. Yang, S. L. Tong, C. G. Fang, S. J. Liu and F. S. Xiao, “High Activity in Selective Catalytic Oxidation of Naphthol to 2-Hydroxy-1,4-naphthoquinone by Molecular Oxygen under Air Pressure over Recycled Iron Porphyrin Catalysts,” Catalysis Communications, Vol. 5, No. 8, 2001, pp. 387-390. doi:10.1016/j.catcom.2004.05.003
[2] T. Chen, E. H. Kang, G. P. Tan, S. J. Liu, S. D. Zheng, K. E. Yang, S. L. Tong, C. G. Fang, F. S. Xiao and Y. Yan, “Highly Selective Catalytic Preparation of Bis(4-Oxobenzo-2-cyclohexen-1-yl) Amine from 1-Naphthylamine Oxidation over Metalloporphyrin Catalysts by Molecular Oxygen under Air Pressure and by Hydrogen Peroxide,” Journal of Molecular Catalysis A: Chemical, Vol. 252, No. 1-2, 2006, pp. 56-62. doi:10.1016/j.molcata.2006.02.039
[3] B. Meunier, “Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage,” Chemical Reviews, Vol. 92, No. 6, 1992, pp. 1411-1456. doi:10.1021/cr00014a008
[4] M. L. Merlau, S.-H. Cho, S.-S. Sun, S. T. Nguyen and J. T. Hupp, “Anthracene-Induced Turnover Enhancement in the Manganese Porphyrin-Catalyzed Epoxidation of Olefins,” Inorganic Chemistry, Vol. 44, No. 15, 2005, pp. 5523-5529. doi:10.1021/ic0505596
[5] J. Rosenthal, T. D. Luckett, J. M. Hodgkiss and D. G. Nocera, “Photocatalytic Oxidation of Hydrocarbons by a Bis-iron(III)-μ-oxo Pacman Porphyrin Using O2 and Visible Light,” Journal of the American Chemical Society, Vol. 128, No. 20, 2006, pp. 6546-6547. doi:10.1021/ja058731s
[6] N. A. Stephenson and A. T. Bell, “Mechanistic Study of Iron(III) [Tetrakis(pentafluorophenyl)Porphyrin Triflate (F20TPP)Fe(OTf) Catalyzed Cyclooctene Epoxidation by Hydrogen Peroxide,” Inorganic Chemistry, Vol. 46, No. 6, 2007, pp. 2278-2285. doi:10.1021/ic060757c
[7] C.-M. Che, J. L. Zhang, R. Zhang, J. S. Huang, T. S. Lai, W. M. Tsui, X. G. Zhou, Zh. Y. Zhou, N. Y. Zhu and C. K. Chang, “Hydrocarbon Oxidation by β-Halogenated Dioxoruthenium(VI) Porphyrin Complexes: Effect of Reduction Potential (RuVI/V) and C-H Bond-Dissociation Energy on Rate Constants,” Chemistry—A European Journal, Vol. 11, No. 23, 2005, pp. 7040-7053. doi:10.1002/chem.200500814
[8] N. A. Stephenson and A. T. Bell, “A Study of the Mechanism and Kinetics of Cyclooctene Epoxidation Catalyzed by Iron(III) Tetrakispentafluorophenyl Porphyrin,” Journal of the American Chemical Society, Vol. 127, No. 24, 2005, pp. 8635-8643. doi:10.1021/ja043380n
[9] A. D. Q. Ferreira, F. S. Vinhado and Y. Iamamoto, “Characterization of Mn(III)porphyrin Immobilized on Modified Silica Surfaces by EXAFS Spectroscopy: A Promising Tool for Analysis of Supported Metalloporphyrin Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 243, No. 1-2, 2006, pp. 111-119. doi:S1381116905005121
[10] M. Moghadam, S. Tangestaninejad, M. H. Habibi and V. Mirkhani, “A convenient Preparation of Polymer-Supported Manganese Porphyrin and Its Use as Hydrocarbon Monooxygenation Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 217, No. 1-2, 2004, pp. 9-12. doi:10.1016/j.molcata.2004.03.001
[11] A. Goifman, J. Gun, V. Gitis, A. Kamyshny Jr., O. Lev, J. Donner, H. B?rnick and E. Worch, “Pyrolysed Carbon Supported Cobalt Porphyrin: A Potent Catalyst for Oxidation of Hydrogen Sulfide,” Applied Catalysis B: Environmental, Vol. 54, No. 4, 2004, pp. 225-235. doi:S0926337304004242
[12] B. Akagah, A. T. Lormier, A. Fournet and B. Figadere, “Oxidation of Antiparasitic 2-Substituted Quinolines Using Metalloporphyrin Catalysts: Scale-Up of a Biomimetic Reaction for Metabolite Production of Drug Candidates,” Organic & Biomolecular Chemistry, Vol. 6, No. 24, 2008, pp. 4494-4497. doi:10.1039/b815963g
[13] C.-M. Che and J.-S. Huang, “Metalloporphyrin-Based Oxidation Systems: From Biomimetic Reactions to Application in Organic Synthesis,” Chemical Communications, No. 27, 2009, pp. 3996-4015. doi:10.1039/b901221d
[14] F. Bedioui, S. Griveau, T. Nyokong, A. J. Appleby, C. A. Caro, M. Gulppi, G. Ochoa and J. H. Zagal, “Tuning the Redox Properties of Metalloporphyrin- and Metallophthalocyanine-Based Molecular Electrodes for the Highest Electrocatalytic Activity in the Oxidation of Thiols,” Physical Chemistry Chemical Physics, Vol. 9, No. 26, 2007, pp. 3383-3396. doi:10.1039/B618767F
[15] D. Cavallini, G. Federici, E. Barboni and M. Marcucci, “Formation of Persulfide Groups in Alkaline Treated Insulin,” FEBS Letters, Vol. 10, No. 2, 1970, pp. 125-128. doi:10.1016/0014-5793(70)80432-X
[16] T. Chatterji, K. Keerthi and K. S. Gates, “Generation of Reactive Oxygen Species by a Persulfide (BnSSH),” Bioorganic & Medicinal Chemistry Letters, Vol. 15, No. 17, 2005, pp. 3921-3924. doi:10.1016/j.bmcl.2005.05.110
[17] C. M. Wright, P. M. Palenchar and E. G. Mueller, “A Paradigm for Biological Sulfur Transfers via Persulfide Groups: A Persulfide-Disulfide-Thiol Cycle in 4-Thiouridine Biosynthesis,” Chemical Communications, No. 22, 2002, pp. 2708-2709. doi:10.1039/B208626C
[18] R. H. Holm, P. Kennepohl and I. E. Solomon, “Structural and Functional Aspects of Metal Sites in Biology,” Chemical Reviews, Vol. 96, No. 7, 1996, pp. 2239-2314. doi:10.1021/cr9500390
[19] C. Y. Zhou, J. W. Raebiger, B. M. Segal and R. H. Holm, “The Influence of Net Charge on the Redox Potentials of Fe4S4 Cubane-Type Clusters in Aprotic Solvents,” Inorganic Chimica Acta, Vol. 300-302, 2000, pp. 892-902. doi:10.1016/S0020-1693(99)00593-9
[20] C. Zhou, L. Cai and R. H. Holm, “Synthesis of a [Fe4S4]-S-Ferriheme Bridged Assembly Containing an Isobacteriochlorin Component: A Further Analogue of the Active Site of Sulfite Reductase,” Inorganic Chemistry, Vol. 35, No. 10, 1996, pp. 2767-2772. doi:10.1021/ic951493p
[21] A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korakoff, “A Simplified Synthesis for Meso-Tetraphenylporphine,” Journal of Organic Chemistry, Vol. 32, No. 2, 1967, pp. 476-478. doi:10.1021/jo01288a053
[22] A. D. Adler, F. R. Longo, F. Kampas and J. Kim, “On the Preparation of Metalloporphyrins,” Journal of Inorganic and Nuclear Chemistry, Vol. 32, No. 7, 1970, pp. 2443-2445. doi:10.1016/0022-1902(70)80535-8
[23] J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney, and A. M. Marguerettaz, “Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins under Equilibrium Conditions,” Journal of Organic Chemistry, Vol. 52, No. 5, 1987, pp. 827-836. doi:10.1021/jo00381a022
[24] D.-H. Xia, Y.-X. Su and J.-L. Qian, “Study on the Oxidation Mechanism of Mixed Thiols in Light Oil Sweetening. 3. Apparent Kinetics of the Catalytic Cooxidation of Mixed Thiols in Gas-Liquid-Solid Systems,” Vol. 38, No. 4, 1999, pp. 1291-1294. doi:10.1021/ie980541l
[25] R. C. van Leerdam, M. Bonilla-Salinas, F. A. M. de Bok, H. Bruning, P. N. L. Lens, A. J. M. Stams and A. J. H. Janssen, “Anaerobic Methanethiol Degradation and Methanogenic Community Analysis in an Alkaline (pH 10) Biological Process for Liquefied Petroleum Gas Desulfurization,” Biotechnology and Bioengineering, Vol. 101, No. 4, 2008, pp. 691-701. doi: 10.1002/bit.21933

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.