Cytotoxicity of Pristine C60 Fullerene on Baby Hamster Kidney Cells in Solution

Abstract

Research on biological effects of C60 and its derivatives is one of the hotspots in the area of biological effects of nanomaterials. Compared with surface-modified C60 derivatives, reports on the biological effects of unmodified pristine C60 are relatively less. This work aimed to investigate the interaction between baby hamster kidney cells and pristine C60 in solution. The C60 suspension was prepared using solvent exchange method and characterized by UV spectrophotometry, electronic transmission microscopy and dynamic light scattering techniques. The baby hamster kidney cells were incubated with different concentrations of C60 suspensions, and light microscopy, cell counting kit 8 assay, and acridine orange staining were used to observe the cell growth and morphology. The results showed that C60 could ihibit the cell growth and induce cell apoptosis with a dose-effect relationship. C60 might enter cells and the possible way it enters cells were also proposed.

Share and Cite:

S. Liu, H. Liu, Z. Yin, K. Guo and X. Gao, "Cytotoxicity of Pristine C60 Fullerene on Baby Hamster Kidney Cells in Solution," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 385-390. doi: 10.4236/jbnb.2012.33037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, 1985, pp. 162-163. doi:10.1038/318162a0
[2] N. Tsao, T. Y. Luh, C. K. Chou, T. Y. Chang, J. J. Wu, C. C. Liu, et al., “In Vitro Action of Carboxyfullerene,” Journal of Antimicrobial Chemotherapy, Vol. 49, No. 4, 2002, pp. 641-649. doi:10.1093/jac/49.4.641
[3] P. Innocenzi and G. Brusatin, “Fullerene-Based Organic- Inorganic Nano-composites and Their Applications,” Chemistry of Materials, Vol. 13, No. 10, 2001, pp. 3126-3139. doi:10.1021/cm0110223
[4] C. M. Sayes, J. D. Fortner, W. Guo, D. Y. Lyon, A. M. Boyd, K. D. Ausman, Y. J. Tao, B. Sitharaman, L. J. Wilson, J. B. Hughes, J. L. West and V. L. Colvin, “The Differential Cytotoxicity of Water-Soluble Fullerenes,” Nano Letters, Vol. 4, No. 10, 2004, pp. 1881-1887. doi:10.1021/nl0489586
[5] A. Isakovic, Z. Markovic, N. Nikolic, B. Todorovic-Markovic, S. Vranjes-Djuric, et al., “Inactivation of Nano- crystalline C60 Cytotoxicity by Gamma-Irradiation,” Bio-materials, Vol. 27, No. 29, 2006, pp. 5049-5058. doi:10.1016/j.biomaterials.2006.05.047
[6] J. W. Ar-bogast, A. P. Darmanyan, C. S. Foote, et al., “Photophysical Properties of C60,” Physical Chemistry, Vol. 95, No. 1, 1991, pp. 11-12. doi:10.1021/j100154a006
[7] P. M?ller, N. R. Jacobsen, J. K. Folkmann, P. H. Danielsen, L. Mikkelsen, J. G. Hemmingsen, L. K. Vesterdal, L. Forchhammer, H. Wallin and S. Loft, “Role of Oxidative Damage in Toxicity of Particulates,” Free Radical Research, Vol. 44, 2010, pp. 1-46. doi:10.3109/10715760903300691
[8] B. Han, M. N. Karim, “Cytotoxicity of Aggregated Ful- lerene C60 Particles on CHO and MDCK Cells,” Scanning, Vol. 30, No. 2, 2008, pp. 213-220. doi:10.1002/sca.20081
[9] L. é. Vesnina, T. V. Ma-montova, M. V. Mikitiuk, N. L. Kutsenko, L. A. Kutsenko, N. A. Bobrova, L. V. Berkalo and I. P. Ka?dashev, “Effect of Fullerene C60 on Functional Activity of Phagocytic Cells,” Eksp Klin Farmakol, Vol. 74, No. 6, 2011, pp. 26-29.
[10] H. W. An, “C60 Fullerene Nanoparticles Protect Neural Cells from Oxidative Damage Caused by the Betaamyloid Peptide,” Free Radical Biology and Medicine, Vol. 49, 2010, p. S176. doi:10.1016/j.freeradbiomed.2010.10.499
[11] D. Bedrov, G. D. Smith, H. Davande, et al., “Passive Transport of C60 Fullerenes through a Lipid Membrane: A Molecular Dynamics Simulation Study,” The Journal of Physical Chemistry B, Vol. 112, No. 7, 2008, pp. 2078- 2084. doi:10.1021/jp075149c
[12] R. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine and K. P. Chun, “Translocation of C60 and Its Derivatives across a Lipid Bilayer,” Nano Letters, Vol. 7, No. 3, 2007, pp. 614 -619. doi:10.1021/nl062515f
[13] W. Li, C. Y. Chen, C. Ye, T. T. Wei, Y. L. Zhao, et al., “The Translocation of Fullerenic Nanoparticles into Lysosome via the Pathway of Clathrin-Mediated Endocytosis,” Nanotechnology, Vol. 19, No. 14, 2008, Article ID: 145102. doi:10.1088/0957-4484/19/14/145102
[14] A. E. Porter, K. Muller, J. Skepper, P. Midgley and M. Welland, “Up-take of C60 by Human Monocyte Macrophages, Its Loca-lization and Implications for Toxicity: Studied by High Resolution Electron Microscopy and Electron Tomography,” Acta Biomaterialia, Vol. 2, No. 4, 2006, pp. 409-419. doi:10.1016/j.actbio.2006.02.006
[15] S. S. Ali, J. I. Hardt, K. L. Quick, et al., “A Biologically Effective Fullerene (C60) Derivative with Superoxide Dismutase Mimetic Properties,” Free Radical Biology and Medicine, Vol. 37, No. 8, 2004, pp. 1191-1202. doi:10.1016/j.freeradbiomed.2004.07.002
[16] A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. Midgley and M. Welland, “Visualizing the Uptake of C60 to the Cy-toplasm and Nucleus of Human Monocyte-Derived Ma-crophage Cells Using Energy-Filtered Transmission Electron Microscopy and Electron Tomography,” Environ-mental Science & Technology, Vol. 41, No. 8, 2007, pp. 3012-3017. doi:10.1021/es062541f
[17] S. Foley, C. Crowley, M. Smaihi, et al., “Cellular Localisation of a Water-Soluble Fullerene Derivative,” Biochemical and Biophysical Research Communications, Vol. 294, No. 1, 2002, pp. 116-119. doi:10.1016/S0006-291X(02)00445-X
[18] J. Rejman, V. Oberle, I. S. Zuhorn, D. Hoekstra, “Size- Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis,” Biochemical Journal, Vol. 377, 2004, pp. 159-169. doi:10.1042/BJ20031253

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.