Effect of Experimental Parameters on the Fabrication of Gold Nanoparticles via Laser Ablation


In this study we report the effect of laser parameters such as laser energy, laser wavelength as well as focusing condition of laser beam on the size and morphology of the gold nanoparticles (GNPs) prepared in deionised water by pulsed laser ablation. The optimum conditions at which gold nanoparticles obtained with controllable average size have been reported as these parameters affected on the size, distribution and absorbance spectrum. Effect of energy was studied. The laser energy was divided into three regions (low, middle and high). A noteworthy change was observed at each region, as the average size changed from 5.9 nm at low energy to 14.4 nm at high energy and the gold nanoparticles reached a critical size of 8 nm at 100 mJ. The Effect of the wavelength on the particle size was examined at 1064 nm, 532 nm. It was found that, the optimum ablation laser wavelength was 1064 nm. Finally, significant results obtained when the effect of focusing conditions studied.

Share and Cite:

H. Imam, K. Elsayed, M. Ahmed and R. Ramdan, "Effect of Experimental Parameters on the Fabrication of Gold Nanoparticles via Laser Ablation," Optics and Photonics Journal, Vol. 2 No. 2, 2012, pp. 73-84. doi: 10.4236/opj.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. K. Alanazi, A. A. Radwan and I. A. Alsarra, “Biopharmaceutical Applications of Nanogold,” Saudi Pharmaceutical Journal, Vol. 18, No. 4, 2010, pp. 179-193.
[2] E. J. Yoo, T. Li, H. G. Park and Y. K. Chang, “Size-Dependent Flocculation Behavior of Colloidal Au Nanoparticles Modified with Various Biomolecules,” Ultramicroscopy, Vol. 108, No. 1, 2008, 1273-1277.
[3] M. Shakibaie, H. Forootanfar, K. Mollazadeh-Moghadam, Z. Bagherzadeh, N. Nafissi-Varcheh, A. R. Shahverdi and M. A. Faramarzi, “Green Synthesis of Gold Nanoparticles by the Marine Microalga Tetraselmis Suecica,” Biotechnology and Applied Biochemistry, Vol. 57, No. 2, 2010, pp. 71-75. doi:10.1042/BA20100196
[4] C.-M. Shih, Y.-T. Shieh and Y.-K. Twu, “Preparation of gold Nanopowders and Nanoparticles Using Chitosan Suspensions,” Carbohydrate Polymers, Vol. 78, No. 2, 2009, pp. 309-315. doi:10.1016/j.carbpol.2009.04.008
[5] K. Kalishwaralal, V. Deepak, S. R. K. Pandian and S. Gurunathan, “Biological Synthesis of Gold Nanocubes from Bacillus Licheniformis,” Bioresource Technology, Vol. 100, No. 21, 2009, pp. 5356-5358.
[6] K. Kalishwaralal, V. Deepak, S. R. K. Pandian, M, Kottaisamy, S. BarathManiKanth, B. Kartikeyan and S. Gurunathan, “Biosynthesis of Silver and Gold Nanoparticles Using Brevibacterium casei,” Colloid and Surface, B: Biointerfaces, Vol. 77, No. 2, 2010, pp. 257-262. doi:10.1016/j.colsurfb.2010.02.007
[7] I. Maliszewska, L. Aniszkiewicz and Z. Sadowski, “Biological Synthesis of Gold Nanostructures Using the Extract of Trichoderma koningii,” Acta Physica Polonic A, Vol. 116, 2009, p. S-163.
[8] P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar and M. Sastry, “Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum,” Biochemistry (Chemical Biology), Vol. 3, No. 5, 2002, pp. 461-463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
[9] Y. Y. Fong, J. R. Gascooke, B. R. Visser, G. F. Metha and M. A. Buntine, “Laser-Based Formation and Properties of Gold Nanoparticles in Aqueous Solution: Formation Kinetics and Surfactant-Modified Particle Size Distributions,” The Journal of Physical Chemistry C, Vol. 114, No. 38, 2010, pp. 15931-15940. doi:10.1021/jp9118315
[10] F. Mafuné, J. Y. Kohno, Y. Takeda and T. Kondow, The Journal of Physical Chemistry B, Vol. 106, No. 34, 2002, pp. 8555–8561.
[11] F. Mafuné, J. Y. Kohno, Y. Takeda and T. Kondow, “Dissociation and Aggregation of Gold Nanoparticles under Laser Irradiation,” The Journal of Physical Chemistry B, Vol. 105, No. 38, 2001, pp. 9050-9056. doi:10.1021/jp0111620
[12] D. Pissuwan, T. Niidome and M. B. Cortie, “The Forthcoming Applications of Gold Nanoparticles in Drug and Gene Delivery Systems,” Journal of Controlled Release, Vol. 149, No. 1, 2011, pp. 65-71. doi:10.1016/j.jconrel.2009.12.006
[13] P. Ghosh, G. Han, M. De, C. K. Kim and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Advanced Drug Delivery Reviews, Vol. 60, No. 11, 2008, pp. 13071315. doi:10.1016/j.addr.2008.03.016
[14] D. T. Nguyen, D.-J. Kim and K.-S. Kim, “Controlled Synthesis and Biomolecular Probe Application of Gold Nanoparticles,” Micron, Vol. 42, No. 3, 2011, pp. 207227. doi:10.1016/j.micron.2010.09.008
[15] A. B. Etame, C. A. Smith, W. C. W. Chan and J. T. Rutka, “Design and Potential Application of PEGylated Gold Nanoparticles with Size-Dependent Permeation through Brain Microvasculature,” Nano Medicine: Nanotechnology, Biology and Medicine, Vol. 7, No. 6, 2011, pp. 9921000. doi:10.1016/j.nano.2011.04.004
[16] T. Donnelly, S. Krishnamurthy, K. Carney, N. McEvoy and J. G. Lunney, “Pulsed Laser Deposition of Nanoparticle Films of Au,” Applied Surface Science, Vol. 254, No. 4, 2007, pp. 1303-1306. doi:10.1016/j.apsusc.2007.09.033
[17] S. Yang, Y.-H. Jang, C. H. Kim, C. Hwang, J. Lee, S. Chae, S. Jung and M. Choi, “A Flame Metal Combustion Method for Production of Nanoparticles,” Powder Technology, Vol. 197, No. 3, 2010, pp. 170-176. doi:10.1016/j.powtec.2009.09.011
[18] C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan and S. Li, “A Novel Chemical Route to Prepare ZnO Nanoparticles,” Materials Letters, Vol. 60, No. 15, 2006, pp. 1828-1832. doi:10.1016/j.matlet.2005.12.046
[19] H. Jia, J. Zeng, W. Song, J. An and B. Zhao, “Preparation of Silver Nanoparticles by Photo-Reduction for Surface-Enhanced Raman Scattering,” Thin Solid Films, Vol. 496, No. 2, 2006, pp. 281-287. doi:10.1016/j.tsf.2005.08.359
[20] P. Y. Lim, R. S. Liu, P. L. She, C. F. Hung and H. C. Shih, “Synthesis of Ag Nanospheres Particles in Ethylene Glycol by Electrochemical-Assisted Polyol Process,” Chemical Physics Letters, Vol. 420, No. 4-6, 2006, pp. 304-308. doi:10.1016/j.cplett.2005.12.075
[21] M. J. Rosemary and T. Pradeep, “Solvothermal Synthesis of Silver Nanoparticles from Thiolates,” Journal of Colloid and Interface Science, Vol. 268, No. 1, 2003, pp. 8184. doi:10.1016/j.jcis.2003.08.009
[22] M. Szymańska-Chargot, A. Gruszecka, A. Smolira, J. Cytawa and L. Michalak, “Mass-Spectrometric Investigations of the Synthesis of Silver Nanoparticles Via Electrolysis,” Vacuum, Vol. 82, No. 10, 2008, pp. 1088-1093. doi:10.1016/j.vacuum.2008.01.022
[23] H. Huang and X. Yang, “Synthesis of Polysaccharide-Stabilized Gold and Silver Nanoparticles: A Green Method,” Carbohydrate Research, Vol. 339, No. 15, 2004, pp. 2627-2631. doi:10.1016/j.carres.2004.08.005
[24] J. Gu, W. Fan, A. Shimojima and T. Okubo, “Microwave-Induced Synthesis of Highly Dispersed Gold Nanoparticles within the Pore Channels of Mesoporous Silica,” Journal of Solid State Chemistry, Vol. 181, No. 4, 2008, pp. 957-963. doi:10.1016/j.jssc.2008.01.039
[25] Y.-C. Liu, L.-H. Lin and W.-H. Chiu, “Size-Controlled Synthesis of Gold Nanoparticles from Bulk Gold Substrates by Sonoelectrochemical Methods,” Journal Physical Chemistry B, Vol. 108, No. 50, 2004, pp. 19237-19240. doi:10.1021/jp046866z
[26] H. Eerikainen and E. Kauppinen, “Preparation of Polymeric Nanoparticles Containing Corticosteroid by a Novel Aerosol Flow Reactor Method,” International Journal of Pharmaceutics, Vol. 263, No. 1-2, 2003, pp. 69-83. doi:10.1016/S0378-5173(03)00370-3
[27] K. L. McGilvray, M. R. Decan, D. Wang and J. Scaiano, “Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles,” Journal of the American Chemical Society, Vol. 128, No. 50, 2006, pp. 15980-15981. doi:10.1021/ja066522h
[28] M. Duocastella, J. M. Fernandez-Pradas, J. Dominguez, P. Serra and J. L. Morenza, “Printing Biological Solutions through Laser-Induced Forward Transfer,” Applied Physics A, Vol. 93, No. 4, 2008, pp. 941-945. doi:10.1007/s00339-008-4741-6
[29] Y. Itoh, M. Abdullah and K. Okuyama, “Direct Preparation of Nonagglomerated Indium Tin Oxide Nanoparticles using Various Spray Pyrolysis Methods,” Journal of Materials Research, Vol. 19, No. 4, 2004, pp. 1077-1086. doi:10.1557/JMR.2004.0141
[30] S. Y. Yang and S. G. Kim, “Characterization of Silver and Silver/Nickel Composite Particles Prepared by Spray Pyrolysis,” Powder Technology, Vol. 146, No. 3, 2004, pp. 185-192. doi:10.1016/j.powtec.2004.07.010
[31] N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont and A. Schmidt-Ott, “Generation of Nanoparticles by Spark Discharge,” Journal of Nanoparticle Research, Vol. 11, No. 2, 2009, pp. 315-332. doi:10.1007/s11051-008-9407-y
[32] J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier and J. H. T. Luong, “Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins,” Journal of the American Chemical Society, Vol. 126, No. 23, 2004, pp. 7176-7177. doi:10.1021/ja048678s
[33] A. Fojtik, A. Henglein and B. Bunsen-Ges, “Laser Ablation of Films and Suspended Particles in Solvent-Formation of Cluster and Colloid Solutions,” Chemical Physics, Vol. 97, No. 2, 1993, pp. 252-254.
[34] S. Machmudah, Wahyudiono, Y. K. M. Sasaki and M. Goto, “Nano-Structured Particles Production Using Pulsed Laser Ablation of Gold Plate in Supercritical CO2,” Journal of Supercritical Fluids, Vol. 60, 2011, pp. 63-68. doi:10.1016/j.supflu.2011.04.008
[35] N. V. Tarasenko, A. V. Butsen, E. A. Nevar and N. A. Savastenko, “Synthesis of Nanosized Particles during Laser Ablation of Gold in Water,” Applied Surface Science, Vol. 252, No. 13, 2006, pp. 4439-4444. doi:10.1016/j.apsusc.2005.07.150
[36] H. J. Kim, I. C. Bang and J. Onoe, “Characteristic Stability of Bare Au-Water Nanofluids Fabricated by Pulsed Laser Ablation in Liquids,” Optics and Laser in Engineering, Vol. 47, No. 5, 2009, pp. 535-538. doi:10.1016/j.optlaseng.2008.10.011
[37] S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev and F. B. Verduraz, “Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment,” Applied Surface Science, Vol. 186, No. 1-4, 2002, pp. 546-551. doi:10.1016/S0169-4332(01)00634-1
[38] N. Haustrup and G. M. Oconnor, “Nanoparticle Generation during Laser Ablation and Laser-Induced Liquefaction,” Physics Procedia, Vol. 12, Part B, 2011, pp. 64-53.
[39] T. Sakai, H. Enomoto, K. Torigoe, H. Sakai and M. Abe, “Surfactantand Reducer-Free Synthesis of Gold Nanoparticles in Aqueous Solutions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 347, No. 1-3, 2008, pp. 18-26. doi:10.1016/j.colsurfa.2008.10.037
[40] P. Calandra, C. Giordano, A. Longo and V. TurcoLireri, “Physicochemical Investigation of Surfactant-Coated Gold Nanoparticles Synthesized in the Confined Space of Dry Reversed Micelles,” Materials Chemistry and Physics, Vol. 98, No. 2-3, 2006, pp. 494-499. doi:10.1016/j.matchemphys.2005.09.068
[41] F. K. Liu, “Extremely Highly Efficient On-Line Concentration and Separation of Gold Nanoparticles Using the Reversed Electrode Polarity Stacking Mode and Surfactant-Modified Capillary Electrophoresis,” Analytica Chimica Acta, Vol. 694, No. 1-2, 2011, pp. 167-173. doi:10.1016/j.aca.2011.03.056
[42] J. P. Sylvestre, S. Poulin, E. Sacher, M. Meunier and J. H. T. Luong, “Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media,” Journal of Physical Chemistry B, Vol. 108, No. 34, 2004, pp. 16864-16869. doi:10.1021/jp047134+
[43] B. Xu, R. G. Song, P. H. Tang, J. Wang, G. Z. Chai, Y. Z. Zhang and Z. Z. Ye, “Preparation of Ag Nanoparticles Colloid by Pulsed Laser Ablation in Distilled Water,” Key Engineering Materials, Vol. 373-374, 2008, pp. 346-349.
[44] A. Sasoh, K. Watanabe, Y. Sano and N. Mukai, “Behavior of Bubbles Induced by the Interaction of a Laser Pulse with a Metal Plate in Water,” Applied Physics A: Material Science & Processing, Vol. 80, No. 7, 2005, pp. 1497-1500.
[45] W. T. Nichols, T. Sasaki and Naoto Koshizaki, “Laser Ablation of a Platinum Target in Water. I. Ablation Mechanisms,” Journal of Applied Physics, Vol. 100, No. 11, 2006, pp. 114911-114917. doi:10.1063/1.2390640
[46] W. T. Nichols, T. Sasaki and N. Koshizaki, “Laser Ablation of a Platinum Target in Water. III. Laser-Induced Reactions,” Journal of Applied Physics, Vol. 100, No. 11, pp. 112006-114913. doi:10.1063/1.2390642
[47] P. Smejkal, J. Pfleger, B. Vlckova and O. Dammer, “Laser Ablation of Silver in Aqueous Ambient: Effect of Laser Pulse Wavelength and Energy on Efficiency of the Process,” Journal of Physics: Conferences Series, Vol. 59, 2007, p. 185.
[48] A. Natha, S. S. Lahaa and A. Khare, “Effect of Focusing Conditions on Synthesis of Titanium Oxide Nanoparticles Via Laser Ablation in Titanium-Water Interface,” Applied Surface Science, Vol. 257, No. 7, 2011, p. 3118.
[49] V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic Imaging of Laser-Induced Plasma,” Analytical Chemistry, Vol. 68, No. 17, 1996, pp. 2966-2973. doi:10.1021/ac960277a

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.