Synthesis and Conformational Studies of Some Metacyclophane Compounds

DOI: 10.4236/ijoc.2012.22023   PDF   HTML   XML   4,219 Downloads   7,383 Views   Citations


Various [3.3.3]metacyclophane derivatives were synthesized from 6,15,24-tri-tert-butyl-9,18,27-trimethoxy [3.3.3] metacyclophane-2,11,20-trione 1 using simple chemical reactions. The conformations of the synthesized compounds were studied using mainly solution Proton Nuclear Magnetic Resonance (1H NMR) spectroscopic methods. Two of the synthesized compounds 5, 6, were found to have a partial cone conformation with the third, 4, having the cone conformation. Detailed variable temperature Proton Nuclear Magnetic Resonance studies further confirmed the partialcone conformation for the two products, 5, 6. During the variable temperature nuclear magnetic resonance spectroscopic studies, 6,15,24-tri-tert-butyl-9,18,27-trimethoxy[3.3.3]metacyclophane-2,11,20-triol was found to have a coalescence temperature of about 0?C.

Share and Cite:

L. Doamekpor, V. Nartey, R. Klake and T. Yamato, "Synthesis and Conformational Studies of Some Metacyclophane Compounds," International Journal of Organic Chemistry, Vol. 2 No. 2, 2012, pp. 152-158. doi: 10.4236/ijoc.2012.22023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Gokel, Ed., “Crown Ethers and Cryptands,” Royal Society of Chemistry, Cambridge, 1991.
[2] J. M. Lehn, “Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture),” Angewandte Chemie International Edition, Vol. 27, No. 1, 1988, pp. 89-112. doi:10.1002/anie.198800891
[3] D. J. Cram, “The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture),” Angewandte Chemie International Edition, Vol. 27, No. 8, 1988, pp. 1009-1020. doi:10.1002/anie.198810093
[4] F. Cadogan, K. Nolan, D. Diamond, “Chapter 34,” In: Z. Asfari, V. Bohmer, J. Harrowfield and J. Vicens, Eds., Caliarenes 2001, Kluwer Academic Press, Dordrecht, 2001, pp. 627-641.
[5] A. Casnati, P. Minari, A. Pochini and R. Ungaro, “Conformational Freezing of p-Tert-butylcalix[6]arene in the Cone Structure by Selective Functionalization at the Lower Rim: Synthesis of New Preorganized Ligands,” Journal of the Chemical Society, Chemical Communications, No. 19, p. 1413.
[6] G. McMahon, S. O’Malley, K. Nolan and D. Diamond, “Important Calixarene Derivatives—Their Synthesis and Applications,” Arkivoc, No. VII, 2003, pp. 23-31.
[7] K. Araki, N. Hashimoto, H. Otsuka and S. Shinkai, “Synthesis and Ion Selectivi-ty of Conformers Derived from Hexahomotrioxacalix[3]arene,” The Journal of Organic Chemistry, Vol. 58, No. 22, 1993, pp. 5958-5963. doi:10.1021/jo00074a021
[8] K. Arake, K. Inaba, H. Otsuka and S. Shinkai, “Conformational Isomerism in and Binding Properties to Al-kali-Metals and an Ammonium Salt of O-alkylated Ho- mooxacalix[3]arenes,” Tetrahedron, Vol. 49, No. 42, 1993, pp. 9465-9478. doi:10.1016/S0040-4020(01)80216-7
[9] K. Araki, K. Akao, H. Otsuka, K. Nakashima, F. Inokuchi and S. Shinkai, “Immo-bilization of the Ring Inversion Motion in Calix[6]arene by a Cap with C3-Symmetry,” Chem- istry Letters, Vol. 23, No. 7, 1994, pp. 1251-1254. doi:10.1246/cl.1994.1251
[10] A. A. Moshfegh, F. Beladi, L. Raduia, A. S. Hosseini, S. Tofigh and G. H. Hakimelahi, “The Synthesis of 5,11, 17-Trihalotetracyclo[,7.19,13]henicosa-1(19),3,5,7(20),9,11,13(21),15,17-nonaene-19,20,21-triols and 5, 11,17-Trihalo-19,20,21-trihydroxytetracyclo [,7. 19,13]henicosa-1(19),3,5,7(20),9,11,13(21),15,17-nonaene-8,14-dione [1]. Cyclo-Derivatives of Phloroglucide Analogues,” Helvetica Chimica Acta, Vol. 65, No. 4, 1982, pp. 1264-1270. doi:10.1002/hlca.19820650416
[11] J. Breitenbach and F. V?gtle, “Macrocyclizations with TosMIC-Yielding [3n]Metacyclophanes,” Synthesis, No. 1-2,1992, pp. 41-43. doi:10.1055/s-1992-34171
[12] M. McCarrick, B. Wu, S. J. Harris, D. Diamond, G. Barrett and M. A. McKervey, Novel Chromogenic Ligands for Lithium and Sodium Based on Calix[4]arene Tet- raesters,” Journal of the Chemical Society, Chemical Communications, No. 18, 1992, pp. 1287-1289. doi:10.1039/c39920001287
[13] O. Possel and A. M. van Lensen, “Tosylmethyl Isocyanide Employed in a Novel Synthesis of Ketones. A New Masked Formaldehyde Reagent,” Tetrahedron Letters, Vol. 18, No. 48, 1977, pp. 4229-4232. doi:10.1016/S0040-4039(01)83472-9
[14] K. Kobiro, M. Takashi, N. Nishikawa, K. Kikuchi, Y. Tobe and Y. Odaira, “Complexation between Novel Cyclo- phane Host and Polar Guest by Hydrogen Bonding. Tet- rahedron Letters, Vol. 28, No. 33, 1977, pp. 3825-3826. doi:10.1016/S0040-4039(00)96396-2
[15] T. Yamato, J. Matsumoto, K. Tokuhisa, M. Kajiha-Ra, K. Suehiro, M. Tashiro, “Medium-Sized Cyclophanes, 20. Synthesis and Conformational Studies of syn- and anti-Dihydroxy[n.2]metacyclophanes,” Chemische Berichte, Vol. 125, No. 11, 1992, pp. 2443-2454. doi:10.1002/cber.19921251116
[16] T. Yamato, L. K. Doamekpor, K. Koizumi, K. Ki-Shi, M. Haraguchi and M. Tashiro, “Synthesis and Conformational Studies of Calixarene-Analogous Trihydroxy[3.3.3] metacyclophanes and Their O-Alkylated Derivatives,” Liebigs Annalen, Vol. 1995, No. 7, 1995, pp. 1259-1267. doi:10.1002/jlac.1995199507167
[17] J. S. Kurland, N. B. Rubin and W. B. J. Wise, “Inversion Barrier in Singly Bridged Biphenyls,” The Journal of Chemical Physics, Vol. 40, No. 8, 1963, pp. 2426. doi:10.1063/1.1725541
[18] K. Kobiro, M. Takahashi, N. Nishikawa, K. Kakiuchi, Y. Tobe and Y. Odawa, “Complexation between Novel Cyclophane Host and Polar Guest by Hydrogen Bonding,” Tetrahedron Letters, Vol. 28, No. 33, 1987, pp. 3825-3826. doi:10.1016/S0040-4039(00)96396-2
[19] M. Takeshita, S. Nishio and S. Shinkai, “A New Basket Molecule Designed from Calix[6]arene by C3-Symmet- rical Capping. Preorganization of Calix[6]arenes for Inclusion of Trimethylammonium Ions,” The Journal of Organic Chemistry, Vol. 59, No. 15, 1994, pp. 4032-4034. doi:10.1021/jo00094a003
[20] P. C. Ohara, D. V. Leff, J. R. Heath and W. Gelbart, “Crystallization of Opals from Polydisperse Nanoparticles,” Physical Review Letters, Vol. 75, No. 19, 1995, pp. 3466-3469. doi:10.1103/PhysRevLett.75.3466
[21] R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahomey and R. G. Osifchin, “Self-Assembly of a Two-Dimensional Super- lattice of Molecularly Linked Metal Clusters,” Science, Vol. 273, No. 5238, 1996, pp. 1690-1693. doi:10.1126/science.273.5282.1690
[22] J. Heath, C. M. Knobler and D. V. Leff, “Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal Nanocrystal Monolayers:?The Influence of Particle Size, Size Distribution, and Surface Passivant,” Journal of Physical Chemistry B, Vol. 101, No. 2, 1997, pp. 189-197. doi:10.1021/jp9611582
[23] M. M. Alvarez, J. T. Koury, T. G. Schaaff, M. N. Shaf- Gullin, I. Vezmar and R. Whetten, “Critical Sizes in the Growth of Au Clusters,” Chemical Physics Letters, Vol. 266, No. 1-2, 1997, pp. 91-98. doi:10.1016/S0009-2614(96)01535-7
[24] D. Diamond and K. Nolan, “Peer Reviewed: Calixarenes: Designer Ligands for Chemical Sensors-These Cup-Shaped Molecules Can Form Inclusion Complexes with a Wide Range of Guest Species,” Analytical Chemistry, Vol. 73, No. 1, 2001 pp. 22A-29A. doi:10.1021/ac012376g
[25] B. H. Smith, “Bridged Aromatic Compounds,” Academic Press, New York, 1964.
[26] P. M. Keehn, S. M. Rosenfield, “Cyclophanes,” Academic Press, New York, 1983.
[27] F. V?gtle, “Cyclophane Chemistry,” John Wiley & Sons Ltd., New York, 1963.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.