A Flower Specific Calcineurin B-Like Molecule (CBL)-Interacting Protein Kinase (CIPK) Homolog in Tomato Cultivar Micro-Tom (Solanum lycopersicum L.)

Abstract

Floral and reproductive organs of higher plants are relatively sensitive to biotic and abiotic stresses compared with the vegetative organs. Calcineurin B-like molecule (CBL) interacting protein kinase (CIPK) has appeared to be involved in acquired tolerance and acclimation under environmental stresses such as salinity, drought and chilling. Semi-quantitative RT-PCR using the vegetative and reproductive organs of tomato Micro-Tom (Solanum lycopersicum L.) at the various developmental stages indicated that SlCIPK2 was expressed specifically in the floral organ. An anti-CIPK specific antibody recognized the recombinant SlCIPK2 specifically and cross-reacted to a CIPK-related polypeptide at a significant level in flower, particularly in stamen. The flower specific CIPK was tightly associated with the microsomes. In vitro pull-down assay of the recombinant SlCIPK2 showed that SlCIPK2 interacts with SlCBLs and stress-responsive transcription factors, SlERF7, SlCBF1 and SlAREB1. The present data suggested that the flower-specific CIPK, SlCIPK2, was involved in calcium signaling in tomato via CBLs and stress tolerance possibly mediated by the stress-responsive transcription factors in stamen.

Share and Cite:

T. Yuasa, Y. Ishibashi and M. Iwaya-Inoue, "A Flower Specific Calcineurin B-Like Molecule (CBL)-Interacting Protein Kinase (CIPK) Homolog in Tomato Cultivar Micro-Tom (Solanum lycopersicum L.)," American Journal of Plant Sciences, Vol. 3 No. 6, 2012, pp. 753-763. doi: 10.4236/ajps.2012.36091.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Yabe, T. Takahashi and Y. Komeda, “Analysis of Tissue-Specific Expression of Arabidopsis thaliana HSP90- Family Gene HSP81,” Plant and Cell Physiology, Vol. 35, No. 8, 1994, pp. 1207-1219.
[2] C. Prasinos, K. Krampis, D. Samakovli and P. Hatzopoulos, “Tight Regulation of Expression of Two Arabidopsis cytosolic Hsp90 Genes during Embryo Development,” Journal of Experimental Botany, Vol. 56, No. 412, 2005, pp. 633-644. doi:10.1093/jxb/eri035
[3] R. Schwacke, S. Grallath, K. E. Breitkreuz, E. Stransky, H. Stransky, W. B. Frommer and D. Rentsch, “LeProT1, a Transporter for Proline, Glycine Betaine, and Gamma-Amino Butyric Acid in Tomato Pollen,” The Plant Cell, Vol. 11, No. 3, 1999, pp. 377-392. doi:10.1105/tpc.11.3.377
[4] K. Shinozaki and K. Yamaguchi-Shinozaki, “Molecular Responses to Dehydration and Low Temperature: Differences and Cross-Talk between Two Stress Signaling Pathways,” Current Opinion in Plant Biology, Vol. 3, No. 3, 2000, pp. 217-223. doi:10.1016/S1369-5266(00)80068-0
[5] J. L. Brewster, T. de Valoir, N. D. Dwyer, E. Winter and M. C. Gustin, “An Osmosensing Signal Transduction Pathway in Yeast,” Science ,Vol. 259, No. 5102, 1993, pp.1760-1763. doi:10.1126/science.7681220
[6] K. Ichimura, K. Shinozaki, G. Tena, J. Sheen, C. V. Giordano, A. Acevedo, A. L. Scopel and C. L. Ballare (MAPK Group), “Mitogen-Activated Protein Kinase Cascades in Plants: A New Nomenclature,” Trends in Plant Science, Vol. 7, No. 7, 2002, pp. 301-308. doi:10.1016/S1360-1385(02)02302-6
[7] J. Li, X. Q. Wang, M. B. Watson and S. M. Assmann, “Regulation of Abscisic Acid-Induced Stomatal Closure and Anion Channels by Guard Cell AAPK Kinase,” Science, Vol. 287, No. 5451, 2000, pp. 300-303. doi:10.1126/science.287.5451.300
[8] T. Umezawa, R. Yoshida, K. Maruyama, K. Yamaguchi-Shinozaki and K. Shinozaki, “SRK2C, a SNF1-Related Protein Kinase 2, Improves Drought Tolerance by Controlling Stress-responsive Gene Expression in Arabidopsis thaliana,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 49, 2004, pp. 17306-17311. doi:10.1073/pnas.0407758101
[9] T. Yuasa, Y. Tomikubo, T. Yamauchi, A. Inoue and M. Iwaya-Inoue, “Environmental Stresses Activate a Tomato SNF1-Related Protein Kinase 2 Homolog, SlSnRK2C,” Plant Biotechnology, Vol. 24, No.4, 2007, pp. 401-408. doi:10.5511/plantbiotechnology.24.401
[10] V. Albrecht, O. Ritz, S. Linder, K. Harter and J. Kudla, “The NAF Domain Defines a Novel Protein-Protein Interaction Module Conserved in Ca2+-Regulated Kinases,” The EMBO Journal, Vol. 20, No. 5, 2001, pp. 1051-1063. doi:10.1093/emboj/20.5.1051
[11] Y. Guo, U. Halfter, M. Ishitani and J.-K. Zhu, “Molecular Characterization of Functional Domains in the Protein Kinase SOS2 That Is Required for Plant Salt Tolerance,” The Plant Cell, Vol. 13, No. 6, 2001, pp. 1383-1400. doi:10.1105/tpc.13.6.1383
[12] E. M. Hrabak, C. W. Chan, M. Gribskov, J. F. Harper, J. H. Choi, N. Halford, J. Kudla, S. Luan, H. G. Nimmo, M. R. Sussman, M. Thomas, K. Walker-Simmons, J. K. Zhu and A. C. Harmon, “The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases,” Plant Physiology, Vol. 132, No. 2, 2003, pp. 666-680. doi:10.1104/pp.102.011999
[13] V. Albrecht, S. Weinl, D. Blazevic, C. D’Angelo, O. Batistic, U. Kolukisaoglu, R. Bock, B. Schulz, K. Harter and J. Kudla, “The Calcium Sensor CBL1 Integrates Plant Responses to Abiotic Stresses,” Plant Journal, Vol. 36, No. 4, 2003, pp. 457-470. doi:10.1046/j.1365-313X.2003.01892.x
[14] J. Xu, H. D. Li, L. Q. Chen, Y. Wang, L. L. Liu, L. He and W. H. Wu, “A Protein Kinase, Interacting with Two Calcineurin B-Like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis,” Cell, Vol. 125, No. 7, 2006, pp. 1347-1360. doi:10.1016/j.cell.2006.06.011
[15] U. Halfter, M. Ishitani and J.-K. Zhu, “The Arabidopsis SOS2 Protein Kinase Physically Interacts with and Is Activated by the Calcium-Binding Protein SOS3,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 7, 2000, pp. 3735-3740. doi:10.1073/pnas.97.7.3735
[16] M. Imamura, T. Yuasa, T. Takahashi, N. Nakamura, M. P. S. H. Nang, S.-H. Zheng, K. Shimazaki and M. Iwaya-Inoue, “Isolation and Characterization of a cDNA Coding Cowpea (Vigna unguiculata (L.) Walp.) Calcineurin B-Like Protein Interacting Protein Kinase, VuCIPK1,” Plant Biotechnology Vol. 25, No. 4, 2008, pp. 437-445.
[17] Y. Niwa, T. Hirano, K. Yoshimoto, M. Shimizu and H. Kobayashi, “Non-Invasive Quantitative Detection and Applications of Non-Toxic, S65T-Type Green Fluorescent Protein in Living Plants,” Plant Journal, Vol. 18, No. 4, 1999, pp. 455-463. doi:10.1046/j.1365-313X.1999.00464.x
[18] U. Kolukisaoglu, S. Weinl, D. Blazevic, O. Batistic and J. Kudla, “Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks,” Plant Physiology, Vol.134, No. 1, 2004, pp. 43-58. doi:10.1104/pp.103.033068
[19] O. Batistic and J. Kudla, “Integration and Channeling of Calcium Signaling through the CBL Calcium Sensor/ CIPK Protein Kinase Network,” Planta, Vol. 219, No. 6, 2004, pp. 915-924. doi:10.1007/s00425-004-1333-3
[20] T. Hirayama and K. Shinozaki, “Perception and Transduction of Abscisic Acid Signals: Keys to the Function of the Versatile Plant Hormone ABA,” Trends in Plant Science, Vol. 12, No. 8, 2007, pp. 343-351. doi:10.1016/j.tplants.2007.06.013
[21] A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko, F. Jammes, C. Valon, N. F. dit Frey and J. Leung, “An Update on Abscisic Acid Signaling in Plants and More...” Molecular Plant, Vol. 1, No. 2, 2008, pp. 198-217. doi:10.1093/mp/ssm022
[22] Y. Uno, T. Furihata, H. Abe, R. Yoshida, K. Shinozaki, K. Yamaguchi-Shinozaki, “Arabidopsis Basic Leucine Zipper Transcription Factors Involved in an Abscisic Acid-Dependent Signal Transduction Pathway under Drought and High-Salinity Conditions,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 21, 2000, pp. 11632-11637. doi:10.1073/pnas.190309197
[23] Y. Kobayashi, M. Murata, H. Minami, S. Yamamoto, Y. Kagaya, T. Hobo, A. Yamamoto, T. Hattori, “Abscisic Acid-Activated SNRK2 Protein Kinases Function in the Gene-Regulation Pathway of ABA Signal Transduction by Phosphorylating ABA Response Element-Binding Factors,” The Plant Journal, Vol. 44, No. 6, 2005, pp. 939-949. doi:10.1111/j.1365-313X.2005.02583.x
[24] H. Choi, H. J. Park, J. H. Park, S. Kim, M. Y. Im, H. H. Seo, Y. W. Kim, I. Hwang and S. Y. Kim, “Arabidopsis Calcium-Dependent Protein Kinase AtCPK32 Interacts with ABF4, a Transcriptional Regulator of ABA-Responsive Gene Expression, and Modulates Its Activity,” Plant Physiology, Vol. 139, No. 4, 2005, pp. 1750-1761. doi:10.1104/pp.105.069757
[25] P. Agarwal, R. Arora, S. Ray, A. K. Singh, V. P. Singh, H. Takatsuji, S. Kapoor and A. K. Tyagi, “Genomewide Identification of C2H2 Zinc-Finger Gene Family in Rice and Their Phylogeny and Expression Analysis,” Plant Molecular Biology, Vol. 65, No. 4, 2007, pp. 467-485. doi:10.1007/s11103-007-9199-y
[26] C. P. Song, M. Agarwal, M. Ohta, Y. Guo, U. Halfter, P. Wang and J. -K. Zhu, “Role of an Arabidopsis AP2/ EREBP-Type Transcriptional Repressor in Abscisic Acid and Drought Stress Responses,” The Plant Cell, Vol. 17, No. 8, 2005, pp. 2384-2396. doi:10.1105/tpc.105.033043
[27] J. L. Celenza and M. Carlson, “Structure and Expression of the SNF1 Gene of Saccharomyces cerevisiae,” Molecular and Cellular Biology, Vol. 4, No. 1, 1984, pp. 54- 60.
[28] S. Ishida, T. Yuasa, M. Nakata and Y. Takahashi, “A Tobacco Calcium-Dependent Protein Kinase, CDPK1, Regulates the Transcription Factor Repression of Shoot Growth in Response to Gibberellins,” The Plant Cell, Vol. 20, No. 12, 2008, pp. 3273-3288.
[29] Y. Guo, L. Xiong, C.-P. Song, D. Gong, U. Halfter and J.-K. Zhu, “A Calcium Sensor and Its Interacting Protein Kinase Are Global Regulators of Abscisic Acid Signaling in Arabidopsis,” Developmental Cell, Vol. 3, No. 2, 2002, pp. 233-244. doi:10.1016/S1534-5807(02)00229-0
[30] Q. S. Qiu, Y. Guo, F. J. Quintero, J. M. Pardo, K. S. Schumaker and J.-K. Zhu, “Regulation of Vacuolar Na+/H+ Exchange in Arabidopsis thaliana by the Salt-Overly- Sensitive (SOS) Pathway,” Journal of Biological Chemistry, Vol. 279, No. 1, 2004, pp. 207-215. doi:10.1074/jbc.M307982200
[31] M. Ishitani, J. Liu, U. Halfter, C. S. Kim, W. Shi and J.-K. Zhu, “SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding,” The Plant Cell, Vol. 12, No. 9, 2000, pp. 1667-1678. doi:10.1105/tpc.12.9.1667
[32] O. Batistic, R. Waadt, L. Steinhorst, K. Held and J. Kudla, “CBL-Mediated Targeting of CIPKs Facilitates the Decoding of Calcium Signals Emanating from Distinct Cellular Stores,” The Plant Journal, Vol. 61, 2010, No. 2, pp. 211-222.
[33] M. Ohta, Yan Guo, U. Halfter and J.-K. Zhu, “A Novel Domain in the Protein Kinase SOS2 Mediates Interaction with the Protein Phosphatase 2C ABI2,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 20, 2003, pp. 11771-11776. doi:10.1073/pnas.2034853100
[34] R. Yoshida, T. Umezawa, T. Mizoguchi, S. Takahashi, F. Takahashi and K. Shinozaki, “The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals,” Journal of Biological Chemistry, Vol. 281, No. 8, 2006, pp. 5310-5318. doi:10.1074/jbc.M509820200
[35] J.-K. Zhu, “Regulation of Ion Homeostasis under Salt Stress,” Current Opinion in Plant Biology, Vol. 6, No. 5, 2003, pp. 441-445. doi:10.1016/S1369-5266(03)00085-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.