Influence of Exogenously Applied Epibrassinolide and Putrescine on Protein Content, Antioxidant Enzymes and Lipid Peroxidation in Lycopersicon esculentum under Salinity Stress

Abstract

Brassinosteroids (BRs) and polyamines (PAs) are widely used to overcome abiotic stresses including salinity stress (NaCl) in plants. In the present investigation, we evaluated the co-application efficacy of 24-epibrassinolide (EBR, a highly active BR) and putrescine (Put, a PA) on the NaCl stress (75 mM and 150 mM) tolerance of Lycopersicon esculentum L. cv. kuber geeta plants. A small rise in protein content was recorded under salinity stress in comparison with untreated control. The NaCl stress was found to significantly enhance the activities of guaiacol peroxidase (GPOX) and superoxide dismutase (SOD); while decline in catalase (CAT) activity was recorded when compared with the untreated control. Salinity stress both at 75 mM and 150 mM was able to cause significant membrane damage as evidenced by an increase in the level of malondialdehyde (MDA) content over untreated control. The EBR and Put co-applications were able to improve protein content in NaCl stressed plants over only NaCl stressed plants. The co-applications of EBR and Put were able to significantly enhance the activities of CAT, SOD and GPOX in L. esculentum under salinity stress (75 mM and 150 mM) when compared with NaCl stressed plants alone. Major decline in the MDA level recorded for EBR and Put co-applications under NaCl stress revealed reduced membrane damages when compared with NaCl stressed plants alone. Our findings provide evidence that EBR and Put co-applications are effective in amelioration of NaCl stress in L. esculentum. Thus co-application potential of EBR and Put may acts an eco-friendly approach towards NaCl stress mitigation in economically important crops.

Share and Cite:

S. Slathia, A. Sharma and S. Choudhary, "Influence of Exogenously Applied Epibrassinolide and Putrescine on Protein Content, Antioxidant Enzymes and Lipid Peroxidation in Lycopersicon esculentum under Salinity Stress," American Journal of Plant Sciences, Vol. 3 No. 6, 2012, pp. 714-720. doi: 10.4236/ajps.2012.36086.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Gao, C. Ouyang, S. Wang, Y. Xu, L. Tang and F. Chen, “Effects of Salt Stress on Growth, Antioxidant Enzyme and Phenylalanine Ammonia-Lyase Activities in Jatropha curcas L. Seedlings,” Plant Soil Environment,” Vol. 5, No. 9, 2008, pp. 373-381.
[2] H. Monirifar and M. Barghi, “Identification and Selection for Salt Tolerance in Alfalfa (Medicago sativa L.) Ecotypes via Physiological Traits,” Notulae Scientia Biologicae, Vol. 1, No. 1, 2009, pp. 63-66.
[3] S. Supper, “Verstecktes Wasser,” Sustainable Austria No. 25, 2003.
[4] K. Nawaz, K. Hussain, A. Majeed, K. Farah, S. Afghan and K. Ali, “Fatality of Salt Stress to Plants: Morphological Physiological and Biochemical Aspects,” African Journal of Biotechnology, Vol. 9, No. 34, 2010, pp. 5475-5480.
[5] S. Yokoi, A. Bressan and P. M. Hasegawa, “Salt Stress Tolerance of Plants,” JIRCAS Working Report, 2002, pp. 25-33.
[6] P. Ahmad, C. A. Jallel, M. M. Arooz and G. Nabi, “Generation of ROS and Non Enzymatic Antioxidants during Abiotic Stress in Plants,” Botany Research International, Vol. 2, No. 1, 2009, pp. 11-20.
[7] R. Munns, “Comparative Physiology of Salt and Water Stress,” Plant, Cell and Environment, Vol. 25, No. 2, 2002, pp. 239-250. doi:10.1046/j.0016-8025.2001.00808.x
[8] K. Siringam, N. Juntawang, S. Cha-Um and C. Kirdmaner, “Salt Stress Induced Ion Accumulation, Ion Homeostasis, Membrane Injury and Sugar Contents in Salt-Sensitive Rice (Oryza sativa L. spp. indica) Roots under Isoosmotic Conditions,” African Journal of Biotechnology, Vol. 10, No. 8, 2011, pp. 1340-1346.
[9] M. Valko, D. Leibfritz, J. Moncol T. D. Mark, M. C. Mi- lan and J. Telser, “Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease,” The International Journal of Biochemistry and Cell Biol- ogy, Vol. 39, No. 1, 2007, pp. 44-84. doi:10.1016/j.biocel.2006.07.001
[10] R. K. Sairam and A. Tyagi, “Physiology and Molecular Biology of Salinity Stress Tolerance in Plants,” Current Science, Vol. 86, No. 3, 2004, pp. 407-412.
[11] S. A. Al-Rawahy, J. L. Stroehlein and M. Pessarakli, “Effect of Salt Stress on Dry Matter Production and Nitrogen Uptake by Tomatoes,” Journal of Plant Nutrition, Vol. 13, No. 5, 1990, pp. 567-577. doi:10.1080/01904169009364100
[12] A. L. Tuna, C. Kaya, M. Ashraf, H. Altunlu, I. Yokas and B. Yagmono, “The Effects of Calcium Sulphate on Growth, Membrane Stability and Nutrient Uptake of Tomato Plants Grown under Salt Stress,” Environmental and Experimental Botany, Vol. 59, No. 2, 2007, pp. 173-178. doi:10.1016/j.envexpbot.2005.12.007
[13] Z.B. Doganler, K. Demir, H. Basak and I. Gul, “ Effect of Salt Stress on Pigment and Total Soluble Protein Contents of Three Different Tomato Cultivars,” African Journal of Agricultural Research, Vol. 5, No. 15, 2010, pp. 2056-2065.
[14] C. M. Andre, L. Yvan and E. Daniele, “Dietary Antioxi- dants and Oxidative Stress from a Human and Plant Perspective: A Review,’’ Current Nutrition and Food Science, Vol. 6, No. 1, 2010, pp. 2-12. doi:10.2174/157340110790909563
[15] J. R. Torres-García, J. A. Escalante-Estrada, M. T. Rodrí- guez-González, C. Ramírez-Ayala and D. Martínez-Moreno, “Exogenous Application of Growth Regulators in Snap Bean under Water and Salinity Stress,” Journal of Stress Physiology and Biochemistry, Vol. 5, No. 3, 2009, pp. 13-21.
[16] S. P. Choudhary, R. Bhardwaj, B. D. Gupta, P. Dutt, R. K. Gupta, S. Biondi and M. Kanwar, “Epibrassinolide Induces Changes in Indole-3-Acetic Acid, Abscisic Acid and Polyamine Concentrations and Enhances Antioxidant Potential of Radish Seedlings under Copper Stress,” Physiologia Plantarum, Vol. 140, No. 3, 2010, pp. 280-296.
[17] S. P. Choudhary, M. Kanwar, R. Bhardwaj, B. D. Gupta and R. K. Gupta, “Epibrassinolide Ameliorates Cr(VI) Stress via Influencing the Levels of Indole-3-Acetic Acid, Abscisic Acid, Polyamines and Antioxidant System of Radish Seedlings,” Chemosphere, Vol. 84, No. 5, pp. 592-600. doi:10.1016/j.chemosphere.2011.03.056
[18] S. P. Choudhary, M. Kanwar, R. Bhardwaj, J. Q. Yu and L. S. Tran, “Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L.,” PLoS ONE, Vol. 7, No. 3, 2012, p. e33210. doi:10.1371/journal.pone.0033210
[19] G. E. Gudesblat and E. Russinova, “Plants Grow on Brassinosteroids,” Current Opinion in Plant Biology, Vol. 14, No. 5, 2011, pp. 530-537. doi:10.1016/j.pbi.2011.05.004
[20] K. R. Li and C. H. Feng, “Effects of Brassinolide on Drought Resistance of Xanthocerous sorbifolia Seedlings under Water Stress,” Acta Physiologiae Plantarum, Vol. 33, No. 4, 2011, pp. 1293-1300. doi:10.1007/s11738-010-0661-0
[21] J. Honnerova, O. Rothova, D. Hola, M. Kocova, L. Kohout and M. Kvasnica, “The Exogenous Application of Brassinosteroids to Zea mays (L.) Stressed by Long Term Chilling Does Not Affect the Activities of Photosystem 1 or 2,” Journal of Plant Growth Regulation, Vol. 29, No. 4, 2010, pp. 500-505. doi:10.1007/s00344-010-9153-0
[22] N. Arora, P. Sharma, R. Bhardwaj and H. K. Arora, “Effect of 28-Homobrassinolide on Growth, Lipid Peroxidation and Antioxidative Enzyme Activities in Seedlings of Zea mays L. under Salinity Stress,” Acta Physiologiae Plantarum, Vol. 30, No. 6, 2008, pp. 833-839. doi:10.1007/s11738-008-0188-9
[23] V. K. Divi, T. Rahman and P. Krishna, “Brassinosteroids Mediated Stress Tolerance in Arabidopsis Shown Interactions with Ascorbic Acid, Ethylene and Salicylic Acid Pathways,” BMC Plant Biology, Vol. 10, 2010, p. 151. doi:10.1186/1471-2229-10-151
[24] S. I. M. Houimli, M. Denden and B. D. Mouhandes, “Effect of 24-Epibrassinolide on the Growth, Chlorophyll, Electrolyte Leakage and Proline by Pepper Plants under NaCl Stress,” EurAsian Journal of Biosciences, Vol. 4, 2010, pp. 96-104. doi:10.5053/ejobios.2010.4.0.12
[25] A. Tassoni, M. Franceschetti and N. Bagni, “Polyamines and Salt Stress Response and Tolerance in Arabidopsis thaliana Flowers,” Plant Physiology and Biochemistry Vol. 46, No. 5-6, 2008, pp. 607-613. doi:10.1016/j.plaphy.2008.02.005
[26] S. S. Hussain, M. Ali, M. Ahmad and K. H. Siddique, “Polyamines: Natural and Engineered Abiotic and Biotic Stress Tolerance in Plants,” Biotechnology Advances, Vol. 29, No. 3, 2011, pp. 300-311. doi:10.1016/j.biotechadv.2011.01.003
[27] H. Zhao and H. Yang, “Exogenous Polyamines Alleviate Lipid Peroxidation Induced by Cadmium Chloride Stress in Malus hupehensis,” Scientia Horticulturae, Vol. 116, No. 4, 2008, pp. 442-447. doi:10.1016/j.scienta.2008.02.017
[28] T. Cakmak and O. Atici, “Effects of Putrescine and Low Temperature on the Apoplastic Antioxidant Enzymes in the Leaves of Two Wheat Cultivars,” Plant Soil Environment, Vol. 55 No. 8, 2009, pp. 320-326.
[29] F. Muhammad, W. Abdul and L. Dong-Jin, “Exogenously Applied Polyamines Increase Drought Resistance by Improving Leaf Water Status, Photosynthesis and Membrane Properties,” Acta Physiologiae Plantarum, Vol. 31, No. 5, 2009, pp. 937-945. doi:10.1007/s11738-009-0307-2
[30] I. M. Zeid, “Response of Bean (Phaseolus vulgaris) to Exogenous Putrescine Treatment under Salinity Stress,” Pakistan Journal of Biological Sciences, Vol. 7, No. 2, 2004, pp. 219-225. doi:10.3923/pjbs.2004.219.225
[31] F. Mutlu and S. Bozcuk, “Salinity Induced Changes of Free and Bound Polyamine Levels in Sunflower (Helianthus annus L.) Roots Differing in Salt Tolerance,” Pakistan Journal of Biological Sciences, Vol. 39, No. 4, 2007, pp. 1091-1102.
[32] K. Yamaguchi, Y. Takahashi, T. Berberich, A. Imai, A. Miyazaki, T. Takahashi, A. Michael and T. Kusano, “The Polyamine Spermine Protects against High Salt Stress in Arabidopsis thaliana,” Federation of European Biochemical Societies, Vol. 580, No. 30, 2006, pp. 6783-6788.
[33] L. Rebecca, D. Soni and S. Anbuselvi, “Effect of Exoge- nous Spermidine on Salinity Tolerance with Respect to Seed Germination,” International Journal of Applied Agricultural Research, Vol. 5, No. 2, 2010.
[34] O. H. Lowry, N. J. Rosebrough and A. L. Farr, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[35] J. Putter, “Peroxidase,” In: H. U. Bergmeyer, Ed., Methods of Enzymatic Analysis, Verlag Chemie, Weinhan, 1974, pp. 685-690.
[36] H. E. Aebi, “Catalase,” In: Methods of Enzymatic Analysis, Verlag Chemie, Weinhan, Vol. 4, 1983, pp. 273-282.
[37] Y. Kono, “Generation of Superoxide Radical during Au- toxidation of Hydroxylamine and an Assay for Superoxide Dismutase,” Archives of Biochemistry and Biophysics, Vol. 186, No. 1, 1978, pp. 189-195. doi:10.1016/0003-9861(78)90479-4
[38] R. L. Heath and L. Packer, “Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation,” Archives of Biochemistry and Biophysics, Vol. 125, No. 1, 1968, pp. 189-198. doi:10.1016/0003-9861(68)90654-1
[39] S. Kagale, U. K. Divi, J. E. Krochko, W. A. Keller and P. Krishna, “Brassinosteroids Confer Resistance to Arabidopsis thaliana and Brassica napus to a Range of Abiotic Stresses,” Planta, Vol. 225, No. 2, 2007, pp. 353-364. doi:10.1007/s00425-006-0361-6
[40] F. Ozdemir, M. Bor, T. Demiral and I. Turkan, “Effects of 24-Epibrassinolide on Seed Germination, Seedling Growth, Lipid Peroxidation, Proline Content and Antioxidative System of Rice (Oryza sativa L.) under Salinity stress,” Plant Growth Regulation, Vol. 42, No. 3, 2004, pp. 203-211. doi:10.1023/B:GROW.0000026509.25995.13
[41] O. N. Kulaeva, E. A. Burkhanova, A. B. Fedina, V.A. Khokhlova, G. A. Bokebayeva, H. M. Bokebayeva and G. Adam, “Effect of Brassinosteroids on Protein Synthesis and plant Cell Ultrastructure under Stress Conditions,” American Chemical Society, Vol. 474, No. , 1991, pp. 141-155.
[42] M. Aghaleh, V. Niknam, H. Ebrahimzadeh and K. Razavi, “Effect of Salt Stress on Physiological and Antioxidant Responses in Two Species of Salicornia (S. persica and S. europaea),” Acta Physiologiae Plantarum, Vol. 33, No. 4, 2011, pp. 1261-1270. doi:10.1007/s11738-010-0656-x
[43] J. A. Hernandez and M. S. Almansa, “Short Term Salt Stress on Antioxidant Systems and Leaf Water Relations of Pea Leaves,” Physiologia Plantarum, Vol. 115, No. 2, 2002, pp. 251-257. doi:10.1034/j.1399-3054.2002.1150211.x
[44] S. Agarwal and V. Pandey, “Antioxidant Enzyme Responses to NaCl Stress in Cassia angustifolia,” Biologia Plantarum, Vol. 48, No. 4, 2004, pp. 555-560. doi:10.1023/B:BIOP.0000047152.07878.e7
[45] S. Elkahoui, J. A. Hernandez, C. Abdelly, G. Rachid and L. Ferid, “Effect of Salt on Lipid Peroxidation and Antioxidant Enzyme Activities of Catharanthus roseus Susspension Cell,” Plant Science, Vol. 168, No. 3, 2010, pp. 607-613.
[46] H. Koca, M. Bor, F. Ozdemir and I. Turkan, “The Effect of Salt Stress on Lipid Peroxidation, Antioxidative Enzymes and Proline Content of Sesame Cultivars,” Environmental and Experimental Botany Vol. 60, No. 3, 2007, pp. 344-351. doi:10.1016/j.envexpbot.2006.12.005
[47] J.-Ju. Duan, S.-R. Guo, Y.-Y. Kang and Y.-S. Jiao, “Effects of Exogenous Spermidine on Polyamine Content and Antioxidant System in Roots of Cucumber under Salinity Stress,” Journal of Ecology and Rural Environment, Vol. 4, No. 4, 2007, pp. 11-17.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.