On the Derivative of a Polynomial


Certain refinements and generalizations of some well known inequalities concerning the polynomials and their derivatives are obtained.

Share and Cite:

N. Rather and M. Shah, "On the Derivative of a Polynomial," Applied Mathematics, Vol. 3 No. 7, 2012, pp. 746-749. doi: 10.4236/am.2012.37110.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. C. Schaffer, “Inequalities of A. Markoff and S. Bernstein for Polynomials and Related Functions,” Bulletin of the American Mathematical Society, Vol. 47, 1941, pp. 565-579. doi:10.1090/S0002-9904-1941-07510-5
[2] M. Riesz, “Uber Einen Satz des Herrn Serge Bernstein,” Acta Mathematica, Vol. 40, 1916, pp. 337-347. doi:10.1007/BF02418550
[3] G. Pólya and G. Szeg?, “Aufgaben und lehrs?tze aus der Analysis,” Springer-Verlag, Berlin, 1925.
[4] C. Frappier, Q. I. Rahman and St. Ruscheweyh, “New Inequalities for Polynomials,” Transactions of the American Mathematical Society, Vol. 288, 1985, pp. 69-99. doi:10.1090/S0002-9947-1985-0773048-1
[5] A. Aziz, “A Refinement of an Inequality of S.Bernstein,” Journal of Mathematical Analysis and Applications, Vol. 142, No. 1, 1989, pp. 226-235. doi:10.1016/0022-247X(89)90370-3
[6] P. D. Lax, “Proof of a Conjecture of P.Erd?s on the Derivative of a Polynomial,” Bulletin of the American Mathematical Society, Vol. 50, 1944, pp. 509-513. doi:10.1090/S0002-9904-1944-08177-9
[7] A. Aziz and Q. G. Mohammad, “Simple Proof of a Theorem of Erdos and Lax,” Proceedings of the American Mathematical Society, Vol. 80, 1980, pp. 119-122.
[8] A. Aziz and N. A. Rather, “New Lq Inequalities for Polynomials,” Mathematical Inequalities and Applications, Vol. 2, 1998, pp. 177-191. doi:10.7153/mia-01-16
[9] N. K. Govil and Q. I. Rahman, “Functions of Exponential Type Not Vanishing in a Half Plane and Related Polynomials,” Transactions of the American Mathematical Society, Vol. 137, 1969, pp. 501-517. doi:10.1090/S0002-9947-1969-0236385-6

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.