Controlled Synthesis and Characterization of Nobel Metal Nanoparticles

Abstract

In this work, monodispersed, well-shaped platinum (3.2 - 6.4 nm), rhodium (2.4 - 5.1 nm), palladium (3.2 - 5.3 nm) nanoparticles capped with poly(vinylpyrrolidone) were synthesized by a polyol reduction method in an ethylene glycol solution at temperature of 190℃. The influences of synthetic parameters on the size and morphology of the noble metal nanoparticles have been systematically investigated. The noble metal nanoparticles were characterized by means of UV-vis, laser scattering particle size distribution analysis (LSPSDA) and transmission electron microscopy (TEM). The experimental results showed that the particle size of metals nanoparticles, the morphology of which was spherical, increased with the raise of metal precursor concentration as well as the amount of PVP. The optimal molar ratio of PVP/metal and metal precursor concentration for the fabrication of Pt, Rh, and Pd nanoparticles with uniform distribution were 10 and 0.1 mM, respectively. The morphologies of the Rh nanoparticles with the size of 5.1 nm were polygons, including hexagons, pentagons, and triangles.

Share and Cite:

H. Hei, R. Wang, X. Liu, L. He and G. Zhang, "Controlled Synthesis and Characterization of Nobel Metal Nanoparticles," Soft Nanoscience Letters, Vol. 2 No. 3, 2012, pp. 34-40. doi: 10.4236/snl.2012.23007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. A. Somorjai, “Introduction to Surface Chemistry and Catalysis,” Wiley, New York, 1994.
[2] H. Song, F. Kim, S. Connor, G. A. Somorjai and P. Yang, “Pt Nanocrystals: Shape Control and Langmuir-Blodgett Monolayer Formation,” The Journal of Physical Chemistry B, Vol. 109, No. 1, 2005, pp. 188-193.
[3] H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang and G. A. Somorjai, “Hydro- thermal Growth of Mesoporous SBA-15 Silica in the Presence of PVP-Stabilized Pt Nanoparticles: Synthesis, Characterization, and Catalytic Properties,” Journal of the American Chemical Society, Vol. 128, No. 9, 2006, pp. 3027-3037. doi:10.1021/ja057383r
[4] R. J. White, R. Luque, V. L. Budarin, J. H. Clark and D. J. Macquarrie, “Supported Metal Nanoparticles on Porous Materials. Methods and Applications,” Chemical Society Reviews, Vol. 38, No. 2, 2009, pp. 481-94. doi:10.1039/b802654h
[5] Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” The Journal of Physical Chemistry, Vol. 95, No. 2, 1991, pp. 525-532. doi:10.1021/j100155a009
[6] D. Astruc, F. Lu and J. R. Aranzaes, “Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie International Edition, Vol. 44, No. 48, 2005, pp. 7852- 7872. doi:10.1002/anie.200500766
[7] J. Song, D. Kim and D. Lee, “ Size Control in the Synthesis of 1 - 6 nm Gold Nanoparticles via Solvent-Controlled Nucleation,” Langmuir, Vol. 27, No. 22, 2011, pp. 13854-13860.
[8] R. M. Rioux, H. Song, M. Grass, S. Habas, K. Niesz, J. D. Hoefelmeyer, P. Yang and G. A. Somorjai, “Monodisperse Platinum Nanoparticles of Well-Defined Shape: Synthesis, Characterization, Catalytic Properties and Future Prospects,” Topics in Catalysis, Vol. 39, No. 3-4, 2006, pp. 167-174. doi:10.1007/s11244-006-0053-2
[9] A. Chen and P. Holt-Hindle, “Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications,” Chemical Reviews, Vol. 110, No. 6, 2010, pp. 3767-3804. doi:10.1021/cr9003902
[10] Y. Bi and G. Lu, “Facile Synthesis of Platinum Nanofiber/Nanotube Junction Structures at Room Temperature,” Chemistry of Materials, Vol. 20, No. 4, 2008, pp. 1224- 1226. doi:10.1021/cm703093m
[11] S. M. Humphrey, M. E. Grass, S. E. Habas, K. Niesz, G. A. Somorjai and T. D. Tilley, “Rhodium Nanoparticles from Cluster Seeds: Control of Size and Shape by Precursor Addition Rate,” Nano Letters, Vol. 7, No. 3, 2007, pp. 785-790. doi:10.1021/nl070035y
[12] Y. Zhang, E. G. Grass, S. E. Habas, F. Tao, T. Zhang, P. Yang and G. A. Somorjai, “One-Step Polyol Synthesis and Langmuir-Blodgett Monolayer Formation of Size-Tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures,” The Journal of Physical Chemistry C, Vol. 111, No. 33, 2007, pp. 12243- 12253. doi:10.1021/jp073350h
[13] Y. Borodko, H. S. Lee, H. Joo, Y. Zhang and G. A. Somorjai, “Spectroscopic Study of the Thermal Degradation of PVP-Capped Rh and Pt Nanoparticles in H2 and O2 Environments,” Journal of Physical Chemistry C, Vol. 114, No. 2, 2010, pp. 1117-1126. doi:10.1021/jp909008z
[14] Y. Xiong, J. M. Mclellan, Y. Yin and Y. Xia, “Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions,” Angewandte Chemie International Edition, Vol. 46, No. 5, 2007, pp. 790-794. doi:10.1002/ange.200604032
[15] S. Xu and Q. Yang, “Well-Dispersed Water-Soluble Pd Nanocrystals: Facile Reducing Synthesis and Application in Catalyzing Organic Reactions in Aqueous Media,” Journal of Physical Chemistry C, Vol. 112, No. 35, 2008, pp. 13419-13425. doi:10.1021/jp800539x
[16] C. A. Stowell and B. A. Korgel, “Iridium Nanocrystal Synthesis and Surface Coating-Dependent Catalytic Activity,” Nano Letters, Vol. 5, No. 7, 2005, pp. 1203-1207. doi:10.1021/nl050648f
[17] D. Seo, J. C. Park and H. Song, “Polyhedral Gold Nanocrystals with Oh Symmetry: From Octahedra to Cubes,” Journal of the American Chemical Society, Vol. 128, No. 46, 2006, pp. 14863-14870. doi:10.1021/ja062892u
[18] Q. Zhang, J. Xie, J. Yang and J. Y. Lee, “Monodisperse icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation,” ACS Nano, Vol. 3, No. 1, 2009, pp. 139-148. doi:10.1021/nn800531q
[19] A. Tao, P. Sinsermsuksakul and P. Yang, “Polyhedral Silver Nanocrystals with Distinct Scattering Signatures,” Angewandte Chemie International Edition, Vol. 45, No. 28, 2006, pp. 4597-4601. doi:10.1002/anie.200601277
[20] B. Wiley, Y. Sun and Y. Xia, “Synthesis of Silver Nanostructures with Controlled Shapes and Properties,” Accounts of Chemical Research, Vol. 40, No. 10, 2007, pp. 1067-1076. doi:10.1021/ar7000974
[21] J. D. Hoefelmeyer, K. Niesz, G. A. Somorjai and T. D. Tilley, “Radial Anisotropic Growth of Rhodium Nanoparticles,” Nano Letters, Vol. 5, No. 3, 2005, pp. 435-438. doi:10.1021/nl048100g
[22] K. H. Park, K. Jang, H. J. Kim and S. U. Son, “Near- Monodisperse Tetrahedral Rhodium Nanoparticles on Charcoal: The Shape-Dependent Catalytic Hydrogenation of Arenes,” Angewandte Chemie International Edition, Vol. 46, No. 7, 2007, pp. 1152-1155. doi:10.1002/anie.200603961
[23] N. Zettsu, J. M. McLellan, B. J. Wiley, Y. Yin, Z. Y. Li and Y. Xia, “Synthesis, Stability, and Surface Plasmonic Properties of Rhodium Multipods, and Their Use as Substrates for Surface—Enhanced Raman Scattering,” Angewandte Chemie International Edition, Vol. 118, No. 8, 2006, pp. 1310-1314. doi:10.1002/ange.200503174
[24] H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai and P. Yang, “Morphological Control of Catalytically Active Platinum Nanocrystals,” Angewandte Chemie International Edition, Vol. 118, No. 46, 2006, pp. 7988-7992. doi:10.1002/ange.200603068
[25] P. Mukul, S. Sougata and P. Tarasankar, “High-Yield Synthesis of 1D Rh Nanostructures from Surfactant Mediated Reductive Pathway and their Shape Transformation,” Journal of Physical Chemistry C, Vol. 114, No. 39, 2010, pp. 16129-16142. doi:10.1021/jp101585y
[26] F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P-Y Silvert and K. Tekaia-Elhsissen, “Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol,” Nano Structured Materials, Vol. 11, No. 8, 1999, 1277-1284. doi:10.1016/S0965-9773(99)00419-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.