Quantum Cosmology Explains the General Galaxy-Black Hole Correlation


The symmetric quantum physics of the Universe demonstrates that the massive black holes developing in the post-inflation big-bang prompt the formation of the host galaxies around them. A general correlation between the variety of galaxies and black holes develops, a specific example of which is the celebrated (but not understood) mass correlation between the host elliptical galaxies and their core black holes. The elucidations and predictions in this exposition are inclusive and far-reaching, resolving a myriad of yet unsolved problems and quandaries in the evolving Universe, among which are: how the general galaxy-black hole correlations are established; what is the role of the dark matter and energy in the formation of galaxies and stars; how the spiral galaxies with less predominant black holes are formed; how the early star forming globular cluster emerged with sparse dark matter; why some galaxy mergers give rise to the starbursts, while other mergers switch the star flourishing galaxies off into grave yards; and how could the Universe have wound up as sheets and filaments of galaxy clusters encompassing great voids.

Share and Cite:

P. Suh, "Quantum Cosmology Explains the General Galaxy-Black Hole Correlation," International Journal of Astronomy and Astrophysics, Vol. 2 No. 2, 2012, pp. 101-112. doi: 10.4236/ijaa.2012.22014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Suh, “The Symmetric Physics of the Universe,” Apeiron, Vol. 18, No. 2, 2011, pp. 84-145.
[2] A. Marconi and L. Hunt, “The Relation between Black Mass and Bulge Mass,” The Astrophysical Journal Letters, Vol. 589, No. 1, 2003, pp. L21-24. doi:10.1086/375804
[3] S. Nadis, “Exploring the Galaxy-Black Hole Connection,” Astronomy, Vol. 38, No. 5, 2010, pp. 28-33.
[4] K. Schawinski, S. Virani, B. Simmons, et al., “Do Moderate-Luminosity Active Galactic Nuclei Suppress Star Formation?” The Astrophysical Journal Letters, Vol. 692, No. 1, 2009, pp. L19-23. doi:10.1088/0004-637X/692/1/L19
[5] T. Creighton and R. Price, “Supermassive Black Hole,” Scholarpedia, Vol. 3, No. 1, 2008, p. 4277. doi:10.4249/scholarpedia.4277
[6] D. Mortlock, S. Warrwen, B. Venemans, et al., “A Luminous Quasar at Redshift z = 7.085,” Nature, Vol. 474, 2011, pp. 616-619. doi:10.1038/nature10159
[7] N. McConnell, C. Ma, K. Gebhaedt, et al., “Two Ten- Billion-Solar-Mass Black Holes at the Center of Giant Elliptical Galaxies,” Nature, Vol. 480, 2011, pp. 215-218. doi:10.1038/nature10636
[8] J. Greene, “Goldlocks Black Holes,” Vol. 306, No. 1, 2012, pp. 40-47.
[9] J. Richard, J. Kneib, H. Ebeling, et al., “Discovery of a Possibly Old Galaxy at z = 6.027, Multiply Imaged by the Massive Cluster Abell 383,” Monthly Notices of the Royal Astronomical Society: Letters, Vol. 414, No. 1, 2011, pp. L31-35. doi:10.1111/j.1745-3933.2011.01050.x
[10] J. Trefil, “The Moment of Creation,” Charles Scribner, New York, 1983.
[11] E. Treister, K. Schawinski, et al., “Black Hole Growth in the Early Universe is Self-Regulating and Largely Hidden from View,” Nature, Vol. 474, 2011, pp. 356-358.
[12] L. Battison, “Dark Matter Theory May Be Wrong,” Space & Astronomy, 19 September 2011.
[13] X. Hernandez and W. Lee, “An Upper Limit to the Central Density of Dark Matter Halo,” Monthly Notices of the Royal Astronomical Society: Letters, Vol. 404, 2010, pp. L6-L10.
[14] J. Simon, A. Bolatto, A. Leroy, et al., “High-Resolution Measurement of the Halos of Four Dark Matter-Dominated Galaxies: Deviations from a Universal Density Profile,” The Astrophysical Journal, Vol. 621, No. 2, 2005, pp. 757-778. doi:10.1086/427684
[15] M. Walker and J. Penarrubia, “A Method for Measuring the Mass Profiles of Dwarf Spheroidal Galaxies,” The Astrophysical Journal, Vol. 742, No. 1, 2011, p. 20. doi:10.1088/0004-637X/742/1/20
[16] L. Kruesi, “Dark Matter Grows More Mysterious,” Astronomy, Vol. 40, No. 2, 2012, p. 13.
[17] K. S. Suh, “Partially Latent Interaction in the Elementary Particle Formation,” International Journal of Theoretical Physics, Vol. 3, No. 5, 1970, pp. 359-366. doi:10.1007/BF00671865
[18] P. Suh, “On Dark Matter and Energy,” American Physical Society Spring Meeting, 2007-2009.
[19] J. Baker, “50 Physics Ideas You Really Need to Know,” Quercus, London, 2007.
[20] D. Bohm, “Quantum Theory,” Dover Publications, New York, 1989.
[21] M. Jee, A. Mahdavi, H. Hoekstra, et al., “A Study of the Dark Core in A520 with Hubble Space Telescope, the Mystery Deepens,” The Astrophysical Journal, Vol. 747, No. 2, 2012, p. 96.
[22] D. Harris, “Vacuum Packed,” The New Scientist, Vol. 213, No. 2852, 2012, pp. 34-37. doi:10.1016/S0262-4079(12)60435-7
[23] J. Vacca, “The World’s 20 Greatest Unsolved Problems,” Prentice Hall, Upper Saddle River, 2005.
[24] I. Nicolson, “Unfolding Our Universe,” Cambridge University Press, Cambridge, 1999. doi:10.1017/CBO9780511584626
[25] J. Webber, “General Relativity and Gravitational Waves,” Dover Publications, New York, 2004.
[26] T. Herter, “Cosmology IV: The Early Universe,” Cornell University Astronomy, 2011.
[27] A. Friedmann, “On the Possibility of a World with Constant Negative Curvature of Space,” General Relativity and Gravitation, Vol. 31, No. 12, 1999, pp. 2001-2008. doi:10.1023/A:1026755309811
[28] M. Brown, P. Ade, J. Bock, et al., “Improved Measurement of the Temperature and Polarization of the Cosmic Background from QUaD,” The Astrophysical Journal, Vol. 705, No. 1, 2009, pp. 978-999. doi:10.1088/0004-637X/705/1/978
[29] G. Hinshaw, et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations,” Astrophysical Journal Supplement Series, Vol. 180, pp. 225-245, 2009.
[30] G. Bouldoul and A. Barrau, “Primordial Black Holes,” 2002. http://arXiv/astro-ph/0212225
[31] R. Minchin, J. Davies and M. Disney, “A Dark Hydrogen Cloud in the Virgo Cluster,” The Astrophysical Journal, Vol. 622, No. 1, 2005, pp. L21-24. doi:10.1086/429538
[32] R. Lovett, “Dark Matter Galaxy Detected: Hidden Dwarf Lurks Nearby?” National Geographic News, 4 January 2011.
[33] C. Conry, A. Leob, D. Spergel, et al., “Evidence Against Dark Matter Halos Surrounding the Globular Clusters MGC1 and NGC2419,” The Astrophysical Journal, Vol. 741, No. 2, 2011, P. 72. doi:10.1088/0004-637X/741/2/72
[34] K. Freeman and G. McNamara, “In Search of Dark Matter,” Springer, UK, 2006.
[35] J. Talpur, “A Guide to Globular Clusters,” Keele Universiry Report, 1997.
[36] J. Gerssen, R. van der March, K. Gebhardt, et al., “HST Search for an Intermediate-Mass Black Hole in Globular Cluster M15-II,” The Astronomical Journal, Vol. 124, No. 6, 2002, p. 3270. doi:10.1086/344584
[37] S. van den Bergh, “Globular Cluster and Dwarf Spheroidal Galaxies,” Monthly Notices of the Royal Astronomical Society: Letters, Vol. 385, No. 1, 2007, pp. L20-22.
[38] A. Navabi and N. Riazi, “Is the Age Problem Resolved?” Journal of Astrophysics and Astronomy, Vol. 24, No. 1-2, 2003, pp. 3-10.
[39] L. Gretchen, H. Harris and W. Harris, “The Globular Cluster/Central Black Hole Connection,” 2010. http://ArXiv:1008.4748v1
[40] B. Dauphole, M. Geffet, J. Colin, et al., “The Kinematics of Globular Clusters, Apocentric Distances and a Halo Metallicity Gradient,” Astronomy and Astrophysics, Vol. 313, 1996, pp. 119-128.
[41] J. Kormendy and R. Bender, “Supermassive Black Holes Do Not Correlate with Disks or Pseudobulges,” Nature, Vol. 469, No. 7330, 2011, pp. 374-376. doi:10.1038/nature09694
[42] C. Carilli and D. Riechers, “Black Holes Were Born before Galaxies,” 213th American Astronomical Society Meeting, Long Beach, 4-8 January 2009.
[43] J. Trump, B. Weiner, C. Scarlata, et al., “A Candels WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation,” The Astrophysical Journal, Vol. 743, No. 2, 2011, p.144.
[44] K. Ferron, “What Is One of the Current ‘Big Ideas’ about Black Holes?” Astronomy, Vol. 39, No. 9, 2011, p. 20.
[45] S. Meibom, S. Barnes, D. Latham, et al., “The Kepler Cluster Study: Stellar Rotation in NGC68111,” The Astrophysical Journal Letters, Vol. 733, No. 1, 2011, p. L9.
[46] V. Allevato, F. Finoguenov, N. Cappelluti, et al., “The XMM-Newton Wide Field Survey in the Cosmo Field,” The Astrophysical Journal, Vol. 736, No. 2, 2011, p. 99. doi:10.1088/0004-637X/736/2/99
[47] T. van Albada, J. Bahcall, K. Begeman, et al., “Distribution of Dark Matter in the Spiral Galaxy NGC3198,” The Astrophysical Journal, Vol. 295, 1985, pp. 305-313. doi.org/10.1086/163375
[48] D. Benningfield, “Black Hole May ‘Wind Up’ Spiral Galaxies,” StarDate, June/July 2008.
[49] K. Cooper, “Galaxy Evolution Model Comes under Fire,” Astronomy Now, Vol. 22, 2005, p. 24.
[50] T. Plotner, “Messsier 90,” Unuiverse Today, 21 December 2009.
[51] A. Amblard, C. Asantha, P. Serra, et al., “Sub-Millimeter Halos with Masses Greater than 3E11 Solar Mass,” Nature, Vol. 470, 2011, pp. 510-512. doi:10.1038/nature09771
[52] P. Eisenhardt, T. Jarrett, R. Overzor, et al., “Merging Galaxies Trigger a Star Burst,” American Astronomical Society Press Release 13 January 2011.
[53] A. van der Wel, A. Stranghn, H. Rix et al., “Extreme Emission-Line Galaxies in Candels,” The Astrophysical Journal, Vol. 742, No. 2, 2011, p. 111. doi:10.1088/0004-637X/742/2/111
[54] L. Grossman, “Galaxy Graves Are Growing Bigger,” Science News, 9 December 2009.
[55] F. Meelia, “The Black Hole at the Center of our Galaxy,” Princeton University, Princeton, 2003.
[56] B. McNamara, P. Nulsen, M. Wise, et al., “The Heating of Gas in Galaxy Cluster by X-Ray Cavities and Large-Scle Shock Fronts,” Nature, Vol. 433, 2005, pp. 45-47. doi:10.1038/nature03202
[57] Y. Shen, M. Strauss, M. Oguri, et al., “Clustering of High-Redshift (z > 2.9) Quasars from Sloann Digital Sky Survey,” The Astrophysical Journal, Vol. 133, 2007, pp. 2222-2241.
[58] W. Zheng, H. Ford, L. Infante, et al., “Bright Candidate of Galxies at Redshift 7 - 8 in the ACS Cluster Field,” American Astronomical Society Meeting, Calcary, June 2006.
[59] M. Iye, O. Kazuaki, N. Kashikawa, et al., “A Galaxy at Red-Shift z = 6.96,” Vol. 443, 2006, pp. 186-188.
[60] A. Frebel, N. Christlieb, J. Norris, et al., “Discovery of HE1523-0901, a Strongly r-Process-Enhanced Metal Poor Star with Detected Uranium,” The Astrophysical Journal Letters, Vol. 660, No. 2, 2007, pp. L117-L120. doi:10.1086/518122
[61] R. Gobat, E. Daddi, M. Onodera, et al., “A Mature Cluster with X-Ray Emission at z = 2.07,” Astronomy & Astrophysics, Vol. 526, 2011, p. A133. doi:10.1051/0004-6361/201016084
[62] P. Capak, C. Carilli, N. Lee, et al., “Spectroscopic Confirmation of an Extremely Starburst at Redshift 4.547,” The Astrophysical Journal Letters, Vol. 681, No. 2, 2008, pp. L53-56. doi:10.1086/590555
[63] K. Tran, C. Papvich, A. Saintonge, et al., “Reversal of Fortune: Confirmation of an Increasing Star Formulation Density in a Cluster at z = 1.62,” The Astrophysical Journal Letters, Vol. 719, No. 2, 2010, p. L126. doi:10.1088/2041-8205/719/2/L126
[64] S. Singh, “Big Bang,” Harper Collins, New York, 2004.
[65] G. Cresci, F. Mannucci, R. Maiolino, et al., “Gas Accretion as the Origin of Chemical Abundance Gradients in the Distant Galaxies,” Nature, Vol. 467, 2010, pp. 811- 813. doi:10.1038/nature09451
[66] E. Baldwin, “Old Galaxies Stick Together,” Astronomy Now, Vol. 22, 2005, p. 24.
[67] D. Coe, N. Benitez, T. Broadhurst, et al., “A High-Resolution Mass Map of Galaxy Cluster Substructure,” Nature, Vol. 722, 2010, pp. 1-25.
[68] F. Perrotta and C. Baccigalupi, Physical Review D, Vol. 65, No. 12, 2002.
[69] H. Hwang and M. Lee, “Searching for Rotating Galaxy Cluster in SDSS and 2dFGRS,” The Astrophysical Journal, Vol. 662, No. 1, 2007, pp. 236-249. doi:10.1086/514328
[70] A. Omar, “A Possibility of Magnus Effect on Disk Galaxies,” Current Science, Vol. 100, No. 9, 2011, pp. 1391- 1393
[71] P. Kroupa and M. Pawlowski, “Dark Matter Crisis,” Spectrum/der Wissenschaft, 2011.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.